UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE102: SYSTEMS & SIGNALS

Midterm Examination I Jan 28, 2016

Put Your Discussion Session in the Corner $\rightarrow \nearrow \nearrow \nearrow$ (* Otherwise Your Midterm might be LOST)

Your name:-

Instructions: Closed Book except one double sided cheat sheet, Calculators are NOT Allowed

Good Luck!

Table 1: Score Table				
Question	i	ii	iii	Score
1	3	4	3	10
2	2	4	4	10
3	5	5		10
4	5	5		10
5	10			10
Total				50

Question 1 (10 pt)

(i) (3 pt) Plot the even and odd decompositions of signal x(t), where

$$x(t) = \begin{cases} -1 - t, & \text{if } -1 \le t < 0, \\ 2, & \text{if } t = 0, \\ 1 - t, & \text{if } 0 < t \le 1. \end{cases}$$

(ii) (4 pt) Consider the following signal

$$y(t) = \cos(2\pi t) - \sin(5\pi t) + \cos\left(\frac{3\pi}{2}t + \frac{\pi}{2}\right).$$

Is y(t) periodic? If yes, what is the fundamental period? If no, why?

(iii) (3 pt) The following figure shows signal z(t).

Plot z(t+3), z(-2t-5) and $z(\frac{t}{3}+4)$.

Question 2 (10 pt)

The input/output (IPOP) relationship for a system S is

$$y(t) = \int_0^t e^{-(t-\tau)} x(\tau) u(\tau) d\tau, \ t \ge 0,$$

where x(t)u(t) is the input signal and y(t) is the output signal. (i) (2 pt) Find the impulse response function (IRF) $h(t, \tau)$. (ii) (4 pt) State properties of system S: TV/TI? C/NC? (iii) (4 pt) Find the outputs corresponding to the following inputs

$$x(t) = u(t - 2),$$

$$x(t) = r(t) = tu(t).$$

Question 3 (10 pt)

For a given system S, consider outputs $y_1(t)$, $y_2(t)$ and $y_3(t)$ corresponding to inputs $x_1(t)$, $x_2(t)$ and $x_3(t)$, respectively, as shown in the figure. (i) (5 pt) Is the system S linear or not? Why? (ii) (5 pt) Is the system S TI or TV? Why?

Question 4 (10 pt) Given IRF of a LTI system

$$h(t) = u(t)u(1-t)$$

and the input signal

$$x(t) = u(t)u(1-t) + \delta(t-4).$$

(i) (5 pt) Find the expression of output signal y(t). (ii) (5 pt) Plot y(t).

(You can solve it graphically or mathematically)

Question 5 (10 pt) Consider cascade system S_1S_2 as follows:

$$x(t) \to [S_1] \to y(t) \to [S_2] \to z(t).$$

The IPOP relation for S_1 is given by:

$$y(t) = \begin{cases} \int_0^t e^{-(t-\sigma)} x(\sigma) u(\sigma) d\sigma, & \text{if } t \ge 0, \\ 0, & \text{otherwise} \end{cases}$$

while the IPOP relation for S_2 is

$$z(t) = e^{-t}y(t)u(t).$$

Find the IRF $h_{12}(t,\tau)$ of the cascaded system S_1S_2 .