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1. Signal and Systems Basics (21 points)

(a) (12 points) System properties. Consider the following system S as shown below
where x(t) and y(t) are the input and output pairs of the system, respectively.

x(t) y(t)S

For an input x(t), the output y(t) is given by,

y(t) = 5x(t+ 1) + 3

∫ t−1

−∞
cos(t− τ)x(τ)dτ

i. Is the system linear? Justify your answer.

Solution:
Linear. Let us assume that inputs x1(t), x2(t) to the system produces outputs
yt(t) and y2(t), respectively. Let us input ax1(t) + bx2(t), then

y(t) = 5(ax1(t+ 1) + bx2(t+ 1)) + 3

∫ t−1

−∞
cos(t− τ)(ax1(τ) + bx2(τ))dτ

= a[5x1(t+ 1) + 3

∫ t−1

−∞
cos(t− τ)x1(τ)dτ ] + b[52(t+ 1) + 3

∫ t−1

−∞
cos(t− τ)x2(τ)dτ ]

= ay1(t) + by2(t)

ii. Is the system time invariant? Justify your answer.

Solution:
Time invariant. Let us assume that input x(t) to the system produces y(t) as
output. Let us input x(t+ t0) to the system and see its output ya(t),

ya(t) = 5x(t+ t0 + 1) + 3

∫ t−1

−∞
cos(t− τ)x(τ + t0)dτ

= 5x(t+ t0 + 1) + 3

∫ t+t0−1

−∞
cos(t+ t0 − τ)x(τ)dτ

= y(t+ t0)

iii. Is the system casual? Justify your answer.

Solution:
Not causal. The output depends on the value of the input in the future in the
term x(t+ 1).

2



iv. Find the unit step response, s(t) of the system.

Solution:
Note that the impulse response h(t) is

h(t) = 5δ(t+ 1) + 3

∫ t−1

−∞
cos(t− τ)δ(τ)dτ

= 5δ(t+ 1) + 3cos(t)

∫ t−1

−∞
δ(τ)dτ

= 5δ(t+ 1) + 3cos(t)u(t− 1)

For the step response we can use an accumulator:

s(t) =

∫ t

−∞
h(τ)dτ =


0 t < −1
5 −1 < t < 1
5 + 3sin(t)− 3sin(1) t > 1

(b) (9 points) Sampling basics. A signal x(t) has a band-limited spectrum X(jω) as
shown below, and zero phase at all frequencies. The signal x(t) is sampled by a unit
impulse train with a period T to generate a sampled signal xs(t), with the spectrum
Xs(jω).

ω−ω0 ω0

X(jω)

1

i. Plot the spectrum of Xs(jω) when 2π
T = 2ω0.

Solution:
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ii. Plot the spectrum of Xs(jω) when 2π
T = ω0.

Solution:

iii. Find xs(t) in the case where 2π
T = ω0.

Solution:
Since Xs(jω) covers all the frequency components, xs(t) is δ(t).

2. Fourier transform (24 points)

(a) (12 points) A signal x(t) has has the following the Fourier Transform.

ω-2 -1 1 2

|X(jω)|

1

ω-2 -1 1 2

∠X(jω)

π

−π

Plot the magnitude and phase plots for the Fourier Transform of the following signals:

i. x(2t)

Solution:
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Recall the scaling property of a Fourier transform:
x(2t) −→ 1

2X(ω/2)

ii. x(t− π
2 )

Solution:
Using the shifting property of the Fourier Transform:
x(t− π

2 ) −→ e−j
π
2
ωX(jω)

Thus amplitude stays the same, which phase gets altered:
∠Xnew(jω) = ∠X(jω)− π

2ω = 2∠X(jω)

iii. x(t) ∗ x(t)

Solution:
Convolution in the time domain is equivalent to multiplication in the Fourier Do-
main. This results in the plot below
Phase can be obtained similar to part (ii), yielding ∠Xnew(jω) = 2∠X(jω)

(b) (12 points) Find the expression of the Fourier transform Xi(jω) for the following xi(t):
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t1 2

x1(t)

1

i.

Solution:
Let x1c(t) be a shifted version of x1(t) so that

x1c(t) =

{
1, |t| ≤ 1,
0, |t| > 1.

Therefore, X1c(jω) = 2sin(ω)
ω . Since x1(t) = x1c(t− 1),

X1(jω) = e−jωX1c(jω)

= 2e−jω
sinω

ω
.

t

1

x2(t)

1

ii.

Solution:
The signal x2(t) can be expressed as x2c(t)− x2τ (t) where x2c(t) and x2τ (t) are shown
below.
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t1

1

2

x2c(t)

t1

1

2 x2τ (t)

The transform for x2c(t) is X2c(jω) = sinω
ω . Using the shifting property of Fourier

transform, we can easily get X2τ (jω) = 2e−j
ω
2 2

sinω
2

ω . We can get the final expression
by combing the previous two transforms:

X2(jω) = X2c(jω)−X2r(jω)

=
2sin(ω)

ω
− 2e−j

ω
2 2
sinω2
w

=
2sin(ω)

ω
− 4

ω
(cos

ω

2
− jsinω

2
)sin

ω

2

=
2sin(ω)

ω
− 2

ω
(2cos

ω

2
sin

ω

2
) +

4

ω
jsin2(

ω

2
)

=
2sinω

ω
− 2sinω

ω
+

4

ω
jsin2(

ω

2
)

= j
4

ω
sin2(

ω

2
).

We can also utilize the ’even and odd’ property to check the answer; since x2(t) is real
and odd, X2(jω) is imaginary and odd as expected.
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−3 −2 −1 1 2 3

−2

−1

1

2

e−tu(t)

−etu(−t)

x3(t)

t

iii.

Solution:
Let w(t) = e−tu(t). Then, x3(t) = w(t)− w(−t) and

X3(jω) = W (jω)−W (−jω)

=
1

1 + jω
− 1

1− jω

= −j 2ω

1 + ω2

Since x3(t) is real and odd, X3(t) is imaginary and odd as expected.

3. LTI system (10 points)
We have the following signal x(t) = sin(πt) + cos2(2πt). The x(t) is input the into the LTI
which is described by H(jω) as shown below.

ω−π/2 π/2−3π 3π

H(jω)

1

(a) (3 points) Determine the period of x(t).

Solution:
It should be 2π/π = 2. cos2(2πt) will have a period of 1/2, which is a multiple of 2.

(b) (3 points) Determine the Fourier series coefficients, ck of x(t).
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Solution:
Since x(t) = 1/2+ ej

2j−
e−jπt

2j + ej4πt

4 + e−j4πt

4 , then c0 = 1/2, c1 = c∗−1 = 1
2j , c4 = c−4 = 1/4,

ck = 0, otherwise.

(c) (4 points) Determine the output of y(t).

Solution:
We should consider the eigen function property. Since it is LTI, y(t) =

∑∞
k=−∞ ckH(jkω)ejkω0t.

Note that H(j0) = 0, H(jπ) = H(−jπ) = 1, and H(j4π) = H(−j4π) = 2, then

y(t) =
ejπt

2j
− e−jπt

2j
+
ej4πt

2
+
e−j4πt

2
= sin(πt) + cos(4πt)

4. Modulation and demodulation (15 points)
It is given that input signals a(t) and b(t) are real and even, with the Fourier Transforms
shown below.

ω−ωm ωm

A(jω)

1

ω−ωm ωm

B(jω)

1

Consider the system below:

×

p(t)

a(t)

+

×

p(t− T
4 )

b(t)

d(t)

f(t)

c(t)
H1

×

×

cos(ωst)

sin(ωst)

H2

H2

Where we define the following filters:

H1(jω) =

{
T, ωs − ωm ≤ |ω| ≤ ωs + ωm
0, otherwise.
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H2(jω) =

{
1, |ω| ≤ ωm
0, |ω| > otherwise.

p(t) =
∞∑
−∞

δ(t− nT )

2π

T
= ωs > 2ωm

Note: You may not need to consider the amplitude scaling in this question.

(a) (4 points) In class, we found the Fourier Transform of the impulse train using the Fourier
Series. Using a similar argument, derive the Fourier Transform of the shifted impulse
train, p(t− T

4 ).

Solution:

F(δT (t− T

4
)) =

1

T

∑
k

F [ej
2π
T
k(t−T

4
)] =

1

T

∑
k

e−j
2πk
4 F [ej

2π
T
k] =

1

T

∑
k

e−j
π
2
k2πδ(ω − kω0) =

1

T

∑
k

j−k2πδ(ω − kω0)

= ω0

∑
k

j−kδ(ω − kω0)

(b) (4 points) Plot the Real and Imaginary components of C(jω) (the Fourier Transform
of the output signal of the bandpass filter H1).

Solution:

ω−ωs ωs

Re{C(jω)}

1
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ω−ωs ωs

Im{C(jω)}

1

(c) (4 points) Plot the Real and Imaginary Components of D(jω) and F (jω)

Solution:
Both D(jω) and F (jω) will be Real as Imaginary part is cancelled.

ω−ωm ωm

Re{D(jω)}

1

ω−ωm ωm

Re{F (jω)}

1

(d) (3 points) Describes d(t) in terms of either a(t) or b(t)

Solution: d(t) is scaled version of a(t)

5. Non-ideal sampling (15 points)
For the ideal sampling system, the area under the impulse at t = nT would be x(nT ). In
this non-ideal sampling system the output is an impulse train xp(t) where the area under the
impulse at t = nT is the average value of the input x(t) on the interval nT −∆ ≤ t ≤ nT +∆.
The non-ideal sampling system is further illustrated in the following diagram and equations:
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x(t) LTI h(t) x̂(nT ) ×

p(t) =
∑∞

n=−∞ δ(t− nT )

xp(t)

xp(t) =
n=∞∑
n=−∞

x̂(nT )δ(t− nT )

x̂(nT ) =
1

2∆

∫ nT+∆

t=nT−∆
x(τ)dτ

(a) Determine h(t).

Solution:
We find that integration over a symmetric range as convolution with a box over the
range, so we have

h(t) =

{
1

2∆ , |t| ≤ ∆
0, |t| > ∆.

(b) Suppose X(jω), the Fourier transform of the band-limited input x(t) is as shown below.

ω−ωM ωM

X(jω)

1 2ωM < 2π
T

Express Xp(jω), the Fourier transform of xp(t), in terms of X(jω).

Solution:
Let Y (jω) be the output of the filter h(t). H(jω), the Fourier transform of h(t), is
given by

H(jω) =
1

2∆
(
2sin(∆ω)

ω
) =

sin(∆ω)

∆ω
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Y (jω) is then just sampled by the impulse train, we then have

Xpjω =
1

T

∞∑
k=−∞

Y (j(ω − k2π

T
))

=
1

T

∞∑
k=−∞

X(j(ω − k2π

T
))H(j(ω − k2π

T
))

Note that since ωM < π
T , this is just X(jω)H(jω) made periodic with period 2pi

T .

(c) Find the maximum value for ∆, such that no frequency component of x(t) is lost due
to the non-ideal sampling process.

Solution:
To avoid losing frequency content, we must not multiply X(jω) by zero in the range
|ω| < ωM . We see that the first zero of H(jω) occurs at

sin(∆ω) = 0

∆ω = π

ω =
π

∆

so in order to avoid losing frequency content, we need to have

ωM ≤
π

∆

∆ ≤ π

ωM

Thus we conclude the largest allowable ∆ is ∆ = π
ωM

.

6. Laplace transform (15 points)

A casual LTI system can be described by the following differential equation:

y′′(t) + 2y′(t) + y(t) = 2x(t) + 3x′′(t).

You may assume resting initial conditions (y(0)= 0, y’(0) =0, y”(0) = 0)

(a) Find the transfer function H(s).

Solution:
Applying the Laplace transformation onto the above equation, we get:

Y (s)(s2 + 2s+ 1) = X(s)(2 + 3s2).

Hence we can get

H(s) =
2 + 3s2

s2 + 2s+ 1
.
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(b) What is the impulse response h(t) of this system?

Solution:

H(s) =
(2 + 3s2)

s2 + 2s+ 1

= 3− 6

1 + s
+

5

(1 + s)2
.

Then we can get the impulse response h(t) = 3δ(t)− 6e−tu(t) + 5te−tu(t).

(c) Given that
∫∞
−∞ x(t)dt = 2.5, compute Y (s) at s = 0.

Solution:
H(0) = 2 and X(0) =

∫∞
−∞ x(t)e−0tdt = 2.5.

Since Y (s) = X(s)H(s), Y (0) = X(0)H(0) = 5.
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Bonus question (6 points)

(a) (sound) You work at a company that has flown in a famous pianist by the name of
Bruinhoven who will play a high-pitched version of the UCLA Fight song. The lowest
note that the score asks for is 1000 Hz. In the digital recording the song sounds very
low pitched, and you hear off-key notes that are in the hundreds of Hertz - much less
than the lowest note in the score. Your boss believes Bruinhoven just had a bad day
and played poorly. However, when you were listening in the room to Bruinhoven, the
song sounded perfect. When you analyze the recording you also find something curious
- these off-key notes are at unusual frequencies that do not map to the specific keys of
the piano. What do you think is the most likely explanation, and what is your evidence?

Solution:
Aliasing occurs when a signal contains frequencies which are higher than half of the
sampling rate. When we sample these higher frequencies are interpreted as lower fre-
quencies that are not actually present in the signal (the higher frequencies wrap around
the sampling rate). This could result in notes which are not actually present in the
signal. Evidence would be that you heard the signal properly, but it sounds differently
after digital recording. One way to fix this would be to use an ADC with a higher
sampling rate.

(b) (light) Can you rediscover the intuition behind a Nobel Prize in Physics? Lasers are
like superpowered lightbulbs and tools for humanity. We can shoot lasers far into space
or use powerful lasers to perform eye surgery. Unfortunately, lasers do not come in
many colors. In the early days of its invention, lasers used to be available at infrared
frequencies (topping out at 250 THz). This was not as useful since humans can only
perceive frequencies of light from 400 THz to 700 THz. Look up the frequency range of
what we perceive as ”green”. Given the infrared laser tech you have on hand and the
tools from this class, how might you generate a green laser?

Solution:
Green light is the 540-580 THz region. We know that a linear method will not be
sufficient for generating a frequency higher than one that is present in the input signal.
We can accomplish this with a non-linear interaction between the light and a crystal,
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which combines the energy of two or more photons into one photon with a harmonic
frequency. In this case we can use a Third Harmonic Generating crystal like BBO to
generate Green Light within our frequency range.

(c) (light) In this question, you will play with a simple while very effective trick (or philoso-
phy) in signal and systems. The application scenario of this trick is photoplethysmogram
(PPG). A PPG is an optically obtained plethysmogram that can be used to detect blood
volume changes in the microvascular bed of tissue. A PPG is often obtained by using
a pulse oximeter which illuminates visible light onto the skin and measures changes in
light absorption using a camera. The blood volume changes can be further utilized for
determining the vital signals like heartbeat rate. In industry, some companies try to use
the blinking LED instead of steady-state LED as illumination source for PPG. How do
you think it might help improve the performance of PPG (i.e., what is the trick behind
it)?

Solution:
As we see the keyword ’visible light’ in the question, we would have an intuition that
the ambient light would be a issue. The ambient light mixes with the PPG signal and
strong ambient inevitably deteriorate the accuracy of heartbeat rate measurement.

The blinking LED is a way to enhance the accuracy. We can control the ’on and off’
of the LED, when the LED is on, the signal we get from the camera (sensor) is the
combination of ambient light and the PPG signal. When the LED is off, we can have
only the ambient light. The subtraction of these two enable you to get purified PPG
signal.

Note: The philosophy behind this question is that when you want to separate two
signals, modulate one of the signal so as to create the difference between these two
signals. The ’on and off’ of the LED is a way of modulation. In signal and systems,
many times you will face cases similar as the PPG example in the above question and
you can apply such philosophy to help you boost the performance or ’see the invisible’.
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