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EE101A — Engineering Electromagnetics Midterm

UCLA Department of Electrical Engineering
EE101A — Engineering Electromagnetics
Fall 2016
Midterm, November 1 2016, (1:45 minutes)

Name Student number

This is a closed book exam — you are allowed 1 page of notes (front+back).

Check to make sure your test booklet has all of its pages — both when you receive it and when you
turn it in.

Remember — there are several questions, with varying levels of difficulty, be careful not to spend too
much time on any one question to the exclusion of all others.

Exam grading: When grading, we focusing on evaluating your level of understanding, based on what
you have written out for each problem. For that reason, you should make your work clear, and
provide any necessary explanation. In many cases, a correct numerical answer with no explanation
will not receive full credit, and a clearly explained solution with an incorrect numerical answer will
receive close to full credit. CIRCLE YOUR FINAL ANSWER.

If an answer to a question depends on a result from a previous section that you are unsure of, be sure
to write out as much of the solution as you can using symbols before plugging in any numbers, that
way at you will still receive the majority of credit for the problem, even if your previous answer was
numerically incorrect.

Please be neat — we cannot grade what we cannot decipher.

Topic Max Points Your points
Problem 1 | Capacitor 45
Problem 2 | Electrostatics 10
Problem 3 | Inductance 45
Total 100
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EE101A - Engineering Electromagnetics Midterm

1. Capacitor (45 points)
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(a) (15 points) Consider a parallel plate capacitor with plate dimensions a and b, and a perfectly
insulating dielectric of thickness d, and a permittivity & Assume that the capacitor is hooked up
to a current source with time varying current i(f)=iscos(w?) . The voltage difference between the
plates is (7). The capacitor obeys the standard relation i) = C dv(t)/dt.

Consider a closed Gaussian surface that surrounds the interface between the top metal plate and

the dielectric. Write an expression for the current density flowing to the top surface J,(¢), out of
the bottom surface J5(#), and the charge density at the interface ps(f) (all as shown in figure).
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EE101A — Engineering Electromagnetics Midterm
(b) (15 points) Now we will use phasors to re-solve (a). Assume the current can be written as
i(t)= Re{ie"’"} and v(t)= Re{Ve"’"} and similarly for all other time varying quantities.

Rewrite the capacitor relation i) = C dv(t)/dt, in phasor form for v .
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(¢) (15 points) Challenge problem: Now consider that the dielectric is “leaky”, i.e. it has a non-zero
conductivity o. Write new expressions for Tl b2
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EE101A - Engineering Electromagnetics Midterm
2. Electrostatics (10 points)

One of these is an impossible electrostatic field. Which one? You must explain why for credit.
(A):  E=4[xy%+2yzp +3xz5]

B):  E=2[y'#+Qxy+2)p+(2y2)%]
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EE101A — Engineering Electromagnetics Midterm
3. Inductance (45 points)

Consider a long solenoid of length /, with N turns, and a radius of b as shown in part (a) of the figure.
You may consider / » b (i.e. the long solenoid approximation).
@) i top view

%_,_ ; F'y (b)

v

V- =
() (15 points) What is the self-inductance of a long solenoid (shown in part (a) of the figure), in
terms of fundamental constants, and the parameters mentioned above?
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(b) (15 points) Assume a current i(2)=I cos(w?) is flowing as shown. What is the voltage
v()=V,— V. at the terminals as a function of time (as shown in part (a)? Pay attention to the sign.
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Now imagine a piece of superconducting pipe that is a perfect electrical conductor with radius
a=>b/2, and thickness d is inserted into the center of the solenoid, as shown in part (b) of the figure.

(c) (15 points) Will the addition of the perfectly conducting (¢ = ) pipe increase, decrease, or leave
unchanged the apparent self-inductance L of the solenoid? Give a qualitative explanation why.
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EE101A — Engineering Electromagnetics

Maxwell’s Equations in media:

In linear media:

Ohm’s law:

Electrostatic Scalar Potential:

Electrodynamic Potential:

Gradient Theorem:

Divergence Theorem:

Stokes’s Theorem:

Electric energy density:

Magnetic energy density:

Joule power dissipation density:

Poynting Vector:

Time averaged Poynting vector: S, =—Re {E X ﬁ'}

Capacitance:

Inductance:

Boundary conditions

Bound charge

Bound current

Definition of phasor F for time harmonic function £?):

Constants (SI units): £=8.85x10"? F/m (or C*N"' m?)
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Midterm
VD=p,
VxE=_B D=gE+P
ot . :
Auxillary Fields: B
VeB=0 = =E_M
VxH=J, +6_D
ot
P=gyE D=¢E
M=y H B=uH
J,=0cE
E=-VV Vector potential: B=VxA
E=—VV—6—A
ot

(Vf)dl= f(b)- f(a)

"———. D Cmm——

(V-A)dV = Aeds
[[(VxA)yds=§ Aea

W,=1E-D or
2
1
W,==B-H or
2
W, =EJ or
S=ExH
1
o2
c=-£
|4
r= 2 2
I 1
Er,z_Eu:O
Dn2 Dn.l_ps
pbv=—V.P
J,,=VxM

W, _Llep
2

(in linear media)

W, = % uH?*  (in linear media)

W,=cE* (in Ohm’s law media)

H,-H,=J,
B,,- B, =0
Pys =Peid
J,,=Mxin
{f(t) =Re {Fe”‘”} =|F|cos(wt + ¢)
tan™'(¢) = Im{F}/Re{F}

Ho=4m x107 H/m (or N A?)
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Table 3-1: Summary of vecter relations.

i Cartesian Cyiindrical Spherical
Coordinates i Ceordinates Coordinates
" Ceordinate variables X0 ] 70,2 R,0,0
! Vector representation, A = RA; +3Ay 124, A, + 844 + 24, RAg+040 + B4y
Magnitude of A, J4| = ‘/A2+A2+A2 VAZ +A} +A% VA} +A}+A}
v = i . ’ ¢ i 2 ¢ i
Position vector OP| = &L+ 37+ 224, tr+2z), RRy.
for P(x1,y1,21) for P(r,91,21) for P(Ry,01,01)
Base vectors properties | #-2=§-§=2-2=1 tr=¢d=2-2=1 R-R=0-8=4:¢=1
2-y=9-2=22=0 #é=¢:2=2-#=0 R8=0.-§=¢-R=0
ixy=2 Pxd=2 Rx0=¢
Fx2=1% dxz=# Oxd=R
] 2xgk=3 xt=9 dxR=0
Dot product, A-B= AB:+ABy+AB;  ABr+AgBy+AB; AgBr+AgBe+4A¢By
2§ 2 ¢ 2 R 6 &
Craoss product, AX B = Ar Ay Ag A Ay A Ap As Ay
B, By B, B, By B, Br By By
Differential length, dl = Rdx+§dy+2dz tdr+@rdd+2dz | RdR+0ORd0+§Rsin0dd
Differential surface aveas dse = Rdydz ds, = #rdddz dsg = RR*sin848d¢
dsy = ydxdz dsy =ddrdz dsg = BRsin0dR dd
| dsy=2dxdy ds; =2rdrdd dsy =@RARdO
Differential volume, dv= | dxdydz rdrdddz R?sin0dRdBdO
Table 3-2: Coordinate transformation rclations.
Transformation  Ceordinate ¥arlables Unit Vectors Vector Components
Cartesian to r= {2+ ! t=z%cos¢+¥sing Ay = Agcost+Aysing
cylindrical ¢ =tan"'(y/x) ¢ = —&sind+ ycosd Ay = —A;sind +Aycosd
=2 2= Ap=4Ay
Cylindrical to x=rcosd & =fcosd —§sin¢ Ay = Arcost —Aysind
Cartesian y=rsing ¥ = fsing +Pcosd Ay = A, sind 4 Agcosd
=2 2=2 Ap=4,
Cartesian to R= {Y2+3R+7 R = &sinBcosd Ag=AsinBcosd
spherical + §sinBsind 4 2cosO +AysinBsind +Azcosd
0=tan"'[{/x2+)?/z] @ =xcosBcosd Ag = A;cosOcosd
+$cosOsing —25ind +AycosBsing — A;sin0
9 = tan~" (v/x) ¢ = ~&sind+ ycosd Ay = —A;sind +Aycosd
Spherical to x=RsinBOcosd % = RsinBeosd A; = AgsinOcos¢
Cartesian +@cosOcosd —sing +AgpcosBcosd —Agysing
y=RsinBsind § = RsinBsind Ay = AgsinBsing
+0cos Osind +cosd +AgcosOsind +Agcosd
z=Rcos® 2= Rcos6 —Bsind Ay = Agcos@ — Apsin®
Cylindricalto  R= {rP+7 R = #sin0+2cos0 Ag =A,sin8+Acos 0
spherical 0=tan"'(r/2) 6 =fcosd —2sin® Ag = A,;cos8 — A,sin®
=0 2=9 Ay =4y
Spherical to r=Rsin@ # = Rsin8+8cos0 A, = Agsin@+Agcos8
cylindrical  9=¢ $=4 Ag=4,
Z=RcosO 2= Rcos® —Bsind A; = Agpcos® —Agsind
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CARTESIAN (RECTANGULAR) COORDINATES (1, y, 2)
av. ,av a3V

VV—X?’;"Fya—y"f‘ZE

24, , a4, oA,

V.A=
- Ox ay dz
Xy 1z
vxA=|d 2 3 —o(Ue i) (343, (08, o4
ox dy 9z dy 0z a9z ax ax dy
A, A, A
2 2 2
V2V=8_K+6V 9°v

52 a5z T gz

CYLINDRICAL COORDINATES (r,¢,z)
av L19V av

vV = _—
d’ragb
a IBA,,, aA
V-A=-
Br(rA)+ r 80
£ odr 2z
1{8 a8 @ 104, 04, « (0A, 9A,\ .1[3 AA,
VAN - A ) C e A
*2=Clor 7 52 r(raqs 32)+¢(Bz 3r)+zr[dr(r 9= 3%
A,- rA¢ Az
19 13?2V  9%v
VY =— r—
V ror (rar)+r26¢2+

SPHERICAL COORDINATES (R,0,¢)

~dV .13V . 1 aVv
v —_— == = =7
Lo R +0R 69+¢Rsin9 6¢

1 1 94
‘A=——_(R%A — (A ¢
RZBR( R+ 939( osin6) + 2 ond 59
R OR ORsin@
1 a8 3
VA | S OO e
A= Risin® |3R 39 39

Ar RAy (Rsin9)A,

- 0 TE 94s] 1T 1 34z @ o AR
=R —(Agsing) — 220 L G- 2 (RA - el
Rsine[ (A4 s106) a¢]+ R[sme 56 R "’)]+¢R[ (R4q) aa]

1 3 vV 1 2 av i GE
ViV = A = (sinp—> ) 4 ——2 2
RZ3R ( aR) t R75in6 90 (S'" ae) t Rsin?e 992
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A-B = ABcosfap Scalar (or dot) product

A x B=nABsinblss
A-BxC)=B.-(CxA)=C-(AxB)
AxBxC)=BA-C)—-C(AeB)
VU +V)=VU+VV
V(UV)=UVV +VVU

V.- (A+B)=V.-A+V-B
V.-(UA)=UV-A+A.-VU
Vx(UA)=UVxA+VUxA
Vx(A+B)=VxA+VxB

V.- (AxB)=B.-(VxA)—A-(VxB)
V.(VxA)=

VxVV=0

V.VV =VV

VxVxA=V(V-A) - VA

f(V~A)dv=fA-ds
v s
/(VxA)-ds:fA-dl
s c
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Vector (or cross) product, fi normal to plane containing Aand B

Divergence theorem (S encloses V)

Stokes’s theorem (S bounded by C)
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