Midterm November 5, 2020 Deadline October 6, 2020 by 2pm Pacific Time

Problem 1 (10 points)

How many bits are required to encode a color spectrum capable of supporting 16 million colors using:

a: Decimal digits in BCD

b: Hexadecimal representation

which representation is more efficient and why?

Problem 2 (10 points)

Fill in the missing entries

Radix	Value	Value in decimal
16	(5 1 7)	
8	(5 1 7)	

True or False:

a: A bubble on the output of a logic gate indicates that the output is active HIGH

b: Bubbles on the input lines of logic gates indicate that these inputs are active LOW

c: The Boolean expression for a logic circuit is A' + B' = X (A' is complement A)

This tells us both inputs are active LOW and the output is active HIGH.

Problem 3 (10 points)

Given E(a, b, c, d) = (ab + c)'(ac + (b' + c' + a'cd)') + a((b + c)(b + d) + c)', which of the following represents the same function as E(a, b, c, d)? Show all your work.

1. a+b+c+d[']

2. a' + b + c 3. b + c' + d

4. a'b'c'd

5. ab'c' 6. b'cd'

Problem 4: (10 points)

a: Explain Gray Codes and their characteristics and explain conversion of GC to Binary with an example

b: What is X-3 code and explain the self complementary property of it.

c: Subtract (-25)₈ from (25)₁₀ using 2's complement and explain the results in octal and decimal

d: realize XOR gate using NOR gates only.

Problem 5: (10 points)

Given the following simplification of a boolean expression, answer the following.

$$(ab' + c')'(b' + c)(a + bc')$$
 (1)

$$= (ab')'c'(b'+c)(a+bc')$$
 (2)

$$= (a'+b)c'(b'+c)(a+bc')$$
 (3)

$$= (a'+b)c'(ab+ac+bb'c'+bcc')$$
(4)

$$= (a'+b)c'(ab+ac) \tag{5}$$

$$= (a'+b)(ab+ac)c' (6)$$

$$= (aa'b + abb + aa'c + abc)c' (7)$$

$$= abc' + abcc' \tag{8}$$

$$= abc'$$
 (9)

a: (4 points) There is at least one mistake in this simplification. Find all steps that are derived incorrectly from its previous step (for example, write $(8)\rightarrow(9)$ if equation (9) is derived incorrectly from (8)).

b: (6 points) Show the correct simplification of (1)

Problem 6: (20 points)

a: Express the given expression in a product of maxterms:

$$F = xy + x'z$$

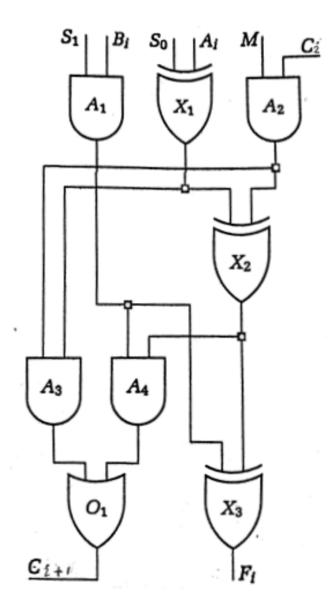
b: simplify the following boolean function and realize it using NOR gates

$$F = (A,B,C,D) = A'B'D' + A'CD + A'BC$$

 $d(A,B,C,D) = A'BC'D + ACD + AB'D'$

c: simplify the Boolean function in SOP and POS form $F = \sum (0,1,2,5,8,9,10)$

Problem 7: (20 points)


a: Draw the logic diagram for a four-bit comparator and explain the \geq block.

b: explain the BCD-to-7-segment decoding logic for "g" segment

c: explain Decimal to BCD priority encoder, draw it partially and show the truth table for inputs 3 and 6.

Problem 8: (10 points)

Consider the following gate network:

Determine the switching expressions for the outputs F_i and C_{i+1} . Using AND, OR, NOT, XOR expressions as appropriate fill in the following table:

M	S_1S_0	Expression for F_i	Expression for $CI + 1$
0	00		
0	01		
0	10		
1	10		
1	11		