University of California Los Angeles

Computer Science Department

Stats
highest - 100
lowest - 33
ove - N < 80
midia - N < 80
Final more difficult

CSM51A/EEM16 Midterm Exam
Winter Quarter 2016
February 8th 2016

This is a closed book exam. Absolutely nothing is permitted except pen, pencil and eraser to write your solutions. Any academic dishonesty will be prosecuted to the full extent permissible by university regulations.

Time allowed 100 minutes.

Problem (possible points)	Points
1 (20)	W
2 (20)	W
3 (20)	20
4 (20)	20
5 (20)	20
Total (100)	100

Problem 1 (20 points)

Use only the "E" gate defined below to implement Boolean function: F=w'xy'+wxz+w'x'z+wx'y'z'

	a	b	С	E(a,b,c)
i	a 0	0	0	0
ĺ	0	0	1	1
	0	1	0	1
	0	1	1	1
	1	0	0	1
	1	0	1	1
-	1	1	0	1

You may also use constants 0 and 1 as inputs.					
a	b	С	E(a,b,c)	1 72 0 0 0 0 0	
0	0	0	0	1111	
0	0	1	1		
0	1	0	1	2 2	1
0	1	1	1	11/2/10/1/10	1.
1	0	0	1	400	19
1	0	1	1	00000	10
1	1	0	1	0 0 0 0	1
1	1	1	0		
				ω	

= ab'+b = a+b E(a',b',0) = a.0+b'.1+a'b

AND module

Problem 2 (20 points)

Given the network below, calculate the critical path delay. Consider $L \rightarrow H$ delay when calculating the critical path.

Problem 3 (20 points)

Four 4-bit numbers A,B,C, and D are given as inputs. E=A+B, F=C+D. Design a system that outputs the larger number between E and F. If E=F, output either E or F. You can use any

Problem 3) Extra Page

W

Problem 4 (20 points)

For a K-map, M denotes the number of prime implicants of the K-map, and N denotes the number of essential prime implicants of the K-map. Draw a 4×4 K-map that has the largest value of P=M-N among all the 4×4 K-maps.

For example, in the following 4×4 K-map, M=3, N=2, P=M-N=1.

or example, in the following 4×4 K-map, M=3	3, N=2, P=M-N=1.
x ₀	max rum of prine
0 0 0 0	MA COLITAIN
1 1 0 0 x ₂	9 3 3
Y 1 1 1 0 1	100
100110	10 0
X ₁	
	1000
1111	T. W.
1111	MADIS
111111	(A) AAA
11 1-1-1	A MA
M=12 N=0 P=12	
M=17 10 0 1-10	
or	
1111	
11111	
11111	
1114	
M=13 N=1	
M=13 N-+	

Problem 5 (20 points)

Use only multiplexers to design a system with input $x \in (0,1,2,...8)$, outputs y and z that implements the following equation

In the system, x is encoded as $x_3x_2x_1x_0$ in binary. y is encoded as y_1y_0 in binary, and z is encoded as z_1z_0 in binary.

Note that the outputs y and z represent the two digits of a base-3 number.

For example, if x=7 ($x_3x_2x_1x_0=0111$), then the system will solve: (7)₁₀ = (21)₃. Thus y=2 ($y_1y_0=10$) and z=1 ($z_1z_0=01$).

$(y_1y_0=10)$ and $z=1$ ($z_1z_0=01$.).		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x3 x2 x, x0	9170	2,20	rep 8 3×2+2 6+2=8
0000	00	000	06
0001	00	1 1212	01
0010	00	1 9	1.6
0011	0	00	
0100	01	0 1	1
0101	01	110	20
0110	10	00	1 The second second
0111	0	0 1	3×1+2
1000	10	100	1
1001		- /	
1010			
1011			
1100			
1101			
1110			
1111			

y= x3+ x2x, y0= x2x, + x2x, x0 Problem 5) Extra Page モノニハ3+ ペンパンの との= ルンツ, スパーメンス, メ + 222,16 Yox2=x1 = 1 Z,x,'=x2x,'x0 J123=1+221=1 Jox' = x, x0 Z, X, X 2= X/2. y1x3= 2211 Z, X, X, = 0 yox: x, = x6 y, x3 x2= x1 yox221:0 それがなるニメ, y, 2, x2 = 0 Zx3 x2 x0 = 0 Zoxxxx Xx Zox/= M2x0 + N2x0 Zox/x1=0 その気を火える Z2/1/20 - 2/2 そがえが、光之

we can box all these multiplemer sets to form desired altiput