Problem 1 (20 points)

a) $(25)_{11} = (x)_y$

Find base y, such that the number of non-leading zeros in x is maximum. Example:

The number of non-leading zeros in 10021 is 2. The number of non-leading zeros in 204003 is 3.

b) $(A1965321)_{16} = (a)_8$ Find the value for a.

a)
$$(25)_{10} = (5)_{10} + (27)_{10} = (27)_{10} = (1000)_{3}$$

 $(27)_{10} = (1011)_{2} = (10)_{3} \times = (1000)_{3} \times = (1000)_$

Base y=3

7

=(24145451441)8) =(a)8

Problem 2 (20 points)

Create a state transition table that has 8 states, which satisfies the following conditions:

1) After minimization, it should have only 3 states.

2) Some states which are 2-equivalent are not 3- equivalent.

Problem 3 (20 points)

For a K-map, M denotes the number of prime implicants of the K-map, and N denotes the number of essential prime implicants of the K-map. Draw a 4×4 K-map that has the largest value of P=M-N among all the 4×4 K-maps. For example, in the following 4×4 K-map, M=3, N=2, P=M-N=1

			X				
		0	0	0	0		
		1	1	0	0		
	1	1	1	1	0	X ₂	
	X3	0	0	1	0		
				-	(1		
X3X2 XX0	20	01		11	-	10	11-17
00	1	1			1	11	M=1
	1	1					N=0
01			1	1		1	P=12-0
,,					1		b=15
10		1	1		1	1	I AMARIAN MARTINE
							No grouping of PIs.
						. 4	(15th) = (17)

Problem 4 (20 points)

F(a,b,c,d,e,f) = ((a+b'c)'(a'+de'+f))'+(a'b')

		-	((((((((((((((((((((
a	b	E(a,b)	4= (a+bc)+(a+de++)+ (ab)
0	0	1	b=(a+b'c)+(a'+de'+f)+(a'b'), (a+b)
0	1	. 0	
1	0	1	= atbct(af(dte))tab
1	1	1	= a+b'c+(a+b'(a'+e))+a'b' $= (a+b'c+a'b')+(a+b'c+ad'+ae'+a'b')+(a+b'c+ad'+a'b')+(a+b'c+a'b'+a'b')+(a+b'c+a'b'+a'b')+(a+b'c+a'b'+a'b')+(a+b'c+a'b'+a'b')+(a+b'c+a'b'+a'b')+(a+b'c+a'b'+a'b')+(a+b'c+a'b'+a'b'+a'b'+a'b')+(a+b'c+a'b'+a'b'+a'b'+a'b'+a'b'+a'b'+a'b'$
			- (ato ctao) Trotoctour

- a) Use only the "E" gate defined above to implement Boolean function F. You can use constants
- b) Implement the Boolean function F using only multiplexers.

a)
$$E(a,b) = a'b' + ab' + ab =)E(a,b) = a+a'b' =)$$
 $E(a,b) = a+b'$

NOT) $E(a,b) = b'$

$$E(0, E(0,b)) = a'b$$

 $E(a, E(0,b)) = a+b$

Problem 5 (20 points)

Find all the 2 input gates which form universal sets by itself (Universal set with only one gate). You can use constants 0 and 1.

NAND:
$$a = (ab)'$$

 $= a'+b'$
NOR: $a = (a,b) = (a+b)'$
 $= a'b'$
 $= a'b'$