[CS M51A F19] Solution to Quiz 3

Date: 11/15/19

TAs

Quiz Problems (30 points total)

Problem 1 (15 points)

Design a pattern recognizer which takes a stream of binary bits as input, one bit at each clock. The output is 1 when it detects a string of 001, 011 or 100. The input signal is x(t), and the output signal is z(t).

1. (7 points) Fill in the empty slots in the state transition and output table.

Solution

PS	x = 0	x = 1		
S_{init}	$S_0, 0$	$S_1, 0$		
S_0	$S_{00}, 0$	$S_{01}, 0$		
S_1	$S_{10}, 0$	$S_{11}, 0$		
S_{00}	$S_{00}, 0$	$S_{01}, 1$		
S_{01}	$S_{10}, 0$	$S_{11}, 1$		
S_{10}	$S_{00}, 1$	$S_{01}, 0$		
S_{11}	$S_{10}, 0$	$S_{11}, 0$		
	NS, z			

2. (8 points) Minimize the number of states in the transition table, and show the final minimized table. Use G_1, G_2, \ldots for the states in the minimal state table.

Solution Looking at the output of the previous table, we first get P_1 as shown:

 $P_1 = (S_{init}, S_0, S_1, S_{11})$ (output 0/0), (S_{00}, S_{01}) (output 0/1), and (S_{10}) (output is 1/0).

	group 1			grou	ıp 2	g3	
	S_{init}	S_0	S_1	S_{11}	S_{00}	S_{01}	S_{10}
0	1	2	3	3	2	3	
1	1	2	1	1	2	1	
P ₂ =	$= (S_{init})$	$(S_0), (S_0)$	(S), (S)	$(1, S_{11})$	(S_{00})	$(S_{01}), (S_{01})$	$), (S_{10})$
	gı	g∠ C		go C	$\begin{bmatrix} g_4 \\ c \end{bmatrix}$	go	go
	S_{init}	S_0	S_1	S_{11}	S_{00}	S_{01}	S_{10}
0			6	6			
1			3	3			
					1		

Since $P_3 = P_2$, we stop. By naming each group, we can write the following table.

PS	x = 0	x = 1		
G1	G2, 0	G3, 0		
G2	G4, 0	G5, 0		
G3	G6, 0	G3, 0		
G4	G4, 0	G5, 1		
G5	G6, 0	G3, 1		
G6	G4, 1	G5, 0		
	NS, z			

Problem 2 (15 points)

For the canonical sequential network shown bellow, determine:

a. (3 points) The switching expressions for the next-state variables and the outputs:

 $Y_1 =$

 $Y_0 =$

 $z_1 =$

 $z_0 =$

Solution

 $Y_1 = xy_0 \oplus y_1$

 $Y_0 = x \oplus y_0$

 $z_1 = xy_0$

 $z_0 = y_0$

b. (4 points) The next-state and the output table (binary-level):

PS	y_1y_0	x = 0	x = 1
A	00	00,00	01,00
B	01		
C	10		
D	11		
		$Y_1Y_0,$	$z_1 z_0$

Solution

PS	y_1y_0	x = 0	x = 1	
A	00	00,00	01,00	
B	01	01,01	10, 11	
C	10	10,00	11,00	
D	11	11,01	00, 11	
		Y_1Y_0, z_1z_0		

c. (4 points) The next-state and the output table (high-level). Let $z = 2z_1 + z_0$:

PS	x = 0	x = 1
А	A, 0	B, 0
В		
С		
D		
	NS	\overline{S}, z

Solution

PS	x = 0	x = 1	
А	A, 0	B, 0	
В	B,1	C,3	
\mathbf{C}	C,0	D,0	
D	D,1	A,3	
	NS, z		

d. (2 points) Is this a minimal FSM? If not, find the minimal FSM.

Solution

Not minimal.

 $P_1 = (\{A,C\},\{B,D\}) = P_2.$ The minimal FSM is

$$\begin{array}{c|c|c} PS & x = 0 & x = 1 \\ \hline A & A, 0 & B, 0 \\ \hline B & B, 1 & A, 3 \\ \hline & NS, z \end{array}$$

If the initial state is A and the input is x(0,5) = 011010, show z(0,5) **Solution**

t	0	1	2	3	4	5
x(t)	0	1	1	0	1	0
s(t)	A	Α	В	\mathbf{C}	\mathbf{C}	D
z(t)	0	0	3	0	0	1