$[\mathrm{CS}\ \mathrm{M51A}\ \mathrm{W17}]$ Solution to Quiz 4

Date: 03/10/2017

Quiz Problems (50 points total)

Problem 1 (20 Points)

We would like to design a 3-bit binary synchronous down-counter.

(4 points) Draw the state-transition diagram, with the three bit flip flop outputs as the State. Begin with the state 111.
Solution:

(16 points) We will be using JK Flip-Flops to implement this down-counter. Complete the truth table given below.
Solution:

Present State			Next State			Inputs					
$Q_2(t)$	$Q_1(t)$	$Q_0(t)$	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	J ₂	K_2	J ₁	K1	J ₀	K ₀
0	0	0	1	1	1	1	Х	1	Х	1	Х
0	0	1	0	0	0	0	Х	0	Х	X	1
0	1	0	0	0	1	0	Х	X	1	1	Х
0	1	1	0	1	0	0	Х	X	0	X	1
1	0	0	0	1	1	X	1	1	Х	1	Х
1	0	1	1	0	0	X	0	0	Х	X	1
1	1	0	1	0	1	X	0	X	1	1	Х
1	1	1	1	1	0	X	0	X	0	X	1

3. (10 points) Complete the circuit based on the truth table above. Use Kmaps if required. $J_0=K_0=1$

 $J_0 = K_0 = 1$ $J_1 = K_1 = Q'_0$ $J_2 = K_2 = Q'_0.Q'_1$

Problem 2 (10 points)

Implement the given function using only one **4 input MUX**. You can use additional gates if needed. Do not use gates if they are not required.

Z = f(A, B, C) = A'B + B'C + BC + AB'C'Solution:

Expanding to Sum of Products form:

$$Z = A'B(C + C') + B'C(A + A') + BC(A + A') + AB'C'$$

= $A'BC + A'BC' + AB'C + A'B'C + ABC + A'BC + AB'C'$
= $A'BC + A'BC' + AB'C + A'B'C + ABC + AB'C'$
= $A'B'(C) + AB'(C + C') + A'B(C + C') + ABC$
= $A'B'(C) + AB'(1) + A'B(1) + ABC$

Thus we can use A and B as select lines:

