[CS M51A FALL 15] QUIZ 1

TA: Teng Xu (xuteng@cs.ucla.edu)

- The quiz is closed book, and closed notes (30mins).
- Please show all your work and write legibly, otherwise no partial credit will be given.
- This should strictly be your own work; any form of collaboration will be penalized.

Name: Young Hoon Kong
Student ID: 404469956

Quiz Problems (50 points total)

Problem 1 (10 points)

Find x and y such that the following conditions are satisfied and show all the steps of your work.

1. (5 points) $(818)_9 = (x)_3$ $8q = 22_3$ 14=013

x = 220122

2. (5 points) What is the largest number y that can be represented with 4 digit-vector in radix 5. Show y in radix 5 and decimal.

$$y = (4444)_5$$

$$= 4.125 + 4.25 + 4.5 + 4$$

$$= 500 + 100 + 20.99$$

$$= 614$$

Problem 2 (16 points)

Solve the following problems using the postulates and theorems of Boolean algebra. Do not use a truth table.

1. (8 points) The Boolean function f is defined as f(a,b,c) = ac' + a'b and the Boolean function g is defined as g(a,b,c) = ac + b'c + a'b'. Show that g(a,b,c)' = f(a,b,c).

$$g(ab,c) = (ac+b'c+a'b')'$$
= $(ac)'(b'c)'(a'b)'$
= $(a'+c')(b+c')(a+b)$
= $(a'+c')(ac'+b)$

2. (8 points) Simplify the following expression.

Problem 3 (24 points)

F is a function that accepts inputs $x \in \{0, 1, 2\}$, $y \in \{1, 2, 3\}$, and outputs $z = max(x^2, y)$. Suppose you use binary code to encode x, y, and z. x is encoded as x_1x_0 , y is encoded as y_1y_0 , z is encoded as $z_2z_1z_0$.

1. (16 points) Fill in the table below.

x_1	x_0	y_1	y_0	z_2	z_1	z_0
0	0	0	0			wester.
0	0	0	1	0	O	BOYES
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	-	-	
0	1	0	1	0	0	1
0	1	1	0	0	ì	0
0	1	1	1	0	1	į
1	0	0	0		_	
1	0	0	1	1	0	9
1	0	1	0	1	O.	O
1	0	1	1	١	0	0
1	1	0	0	e		
1	1	0	1	_		
1	1	1	0			
1	1	1	1	_		2

2. (8 points) Fill in the sets in the forms specified below.

$$z_{2} = \sum_{m(m_{1} + m_{1})} m(m_{1} + m_{1})$$

$$z_{1} = \sum_{m(m_{2} + m_{3} + m_{6} + m_{1})}$$

$$z_{0} = \prod_{m(m_{2} + m_{3} + m_{6} + m_{1})} m(m_{1} + m_{1})$$

$$dc - set of z_{1} = dc(0, 4, 8, 1), 3, 14, 15)$$