
CS33: Introduction to Computer Organization
Fall 2020 Midterm

Name: Shalinee Maitra

UID: 805134420

Rules/Instructions:

● All of your answers go into red tables like this:

What’s the answer Your answer here

● When complete, save the exam as a PDF. (if there is a technical problem, just save as

docx)
● Turn the exam in on CCLE, before 2:30pm PST (normal time), 9:30pm PST (makeup

time). The exam is designed for 2 hours, but we are giving you an extra 30 minutes in
case you have any technical difficulties.

● This is an open notes exam. By the honor system, you may not discuss exam
questions/solutions/experiences/thoughts/etc. with any person for 12 hours after the
exam start time.

● Please do not alter which page each question is on, or you will be penalized. This is for
compatibility with gradescope.

Notes:

● There are 60 points total, but the exam is graded out of 50. (ie. the exam is pre-curved
so that there are 10 extra credit points possible)

● You may ask for questions on the Piazza live Q&A. These questions MUST be made
privately, and we will make public the questions which are relevant to the whole class.
TAs and I will post any clarifications to the Piazza live Q&A, so it may be a good idea to
check for clarifications before the exam is over.

● If the architecture of the machine is not specified, assume that the question is
being asked in the context of a 64-bit little endian x86 machine.

Finally, please follow the university guidelines in reporting academic misconduct.

You may begin once you have read the rules above.

1

Question 1. Multiple Choice (12 pts)

For the following multiple choice questions, select all that apply. If none of the answers are
correct, simply leave the question blank. (2pts each, no partial credit)

1. Why do machines store information with binary (ie. base 2) instead of another base?
a. Binary is more compact (eg. than decimal), so it saves memory space.
b. Many circuit components are bistable, making it convenient for circuit design.
c. Computer arithmetic is more efficient with a binary representation at the circuit

level.
d. Using higher bases makes it difficult to store numbers defined in lower bases.

2. What kind of data isn’t stored within the address space of a program?

a. Register Values
b. Stack
c. Heap
d. Global Variables
e. Program Binary

3. Suppose the variable “x” was defined as an “unsigned int” in C, and is stored in the “a”

register (rax/eax/ax, etc.).
Which of the following instructions correctly implements “x * 2”?

a. leal ($eax, $eax, 1), $eax

b. movl ($eax, $eax), $eax

c. addl ($eax), $eax

d. addl (,$eax, 1), $eax
e. addl $eax, $eax

f. sall 2, $eax

g. mulw 2, $ax

4. Suppose the variable “x” was defined as an “unsigned int” in C, and is stored in the “a”

register (rax/eax/ax, etc.).
Which of the following instructions correctly implements “x / 2”?

a. sall 2, $eax

b. sarl 2, $eax

c. sall 2, $eax

d. sarl 1, $eax
e. divq 2, $rax

2

5. Which of the following registers are guaranteed to have a different value before and after

a call instruction in x86-64?
a. rax
b. rbx
c. rdi
d. rbp
e. rsp

6. Which of the following C statements are true?

a. (8/5) == (8.0/5.0)
b. (8/5) == (long) (8.0/5.0)
c. (float) (8/5) == (8.0/5.0)
d. (float) (8/5) == (long) (8.0/5.0)

Multiple Choice
Question Number

Write your answers here: (eg: a,b,d)

1. b

2. a

3. a, c, d, e

4. d,e

5. a, c

6. a

3

Question 2. A Bit of Manipulation (8 Pts)

Your friend gave you the solution to two of the datalab questions (nice friend!), but forgot to tell
you which they were. Try to decipher them!

1. func1 (4 Pts)

Hint: 1<=b<=31

 Your answer in the cell below:

What does this function do?
Please use only one or at
most two sentences.

calculates a*(2^b)

2. func2 (4 Pts)

 Your answer in the cell below:

What does this function do?
Please use only one or at
most two sentences.

returns absolute value of x

4

Question 3. Novel Numbers (7 pts)

Suppose we have a new machine where bytes are only 7 bits long, and there are no other
datatypes. Luckily, we can still represent integer and floating point numbers easily.

1. Assuming standard two’s complement representation, what are the following values:

 Binary Decimal

Tmin 1000000 -64

Tmax 0111111 63

-1 1111111

-0 0000000

+0 0000000

2. Assume we have a 7-bit floating point representation with 3 bits for the exponent, and
otherwise we follow the normal floating point representation. (please remember that
E=111 and E=000 is reserved for infinity/nan/denorm) What are the following values:

 Binary Decimal

Largest Normalized Number 0 101 000 4

Smallest Positive
Normalized Number

0 011 000 1

-1 1 011 000

-0 1000000

+0 0000000

5

Question 4. How pointy is your rax? (7 pts)

Based on each instruction individually, determine whether you think %rax is a pointer *before*
the instruction is executed.

You have three options:
Yes -- There is evidence that %rax is a pointer.
No -- There is evidence that %rax is not a pointer.
Maybe -- There isn’t evidence that %rax is a pointer or not a pointer.

 Is rax a pointer? (Options: Yes, No, Maybe)

addq %rax, %rax No

addq %rbx, %rax No

leaq (%rbx, %rax, 4), %rcx No

leaq (%rax, %rbx, 4), %rcx Maybe

movq (%rbx, %rax, 4), %rcx No

movq (%rax, %rbx, 4), %rcx No

cmpq $5, %rax No

6

Question 5. Structures and Unions (10 pts)
Use the following structure definitions to answer the questions in this section.

struct overwatch {
 long* tracer;
 int mercy;
 union {
 char winston;
 short mei;
 } slot3;

 char brigite;
};

struct talon {
 int moira;
 short reaper;
 char sombra;
 char widowmaker;
};

1. Each cell in the following tables represents a byte. Each byte that is part of the struct can be
part of a field (F) or padding (P). You need to fill out the table with letters (F or P) categorizing
each byte. If a cell represents a byte that is not part of the data structure, leave it blank. (4pts)

struct overwatch

F F F F F F F F F F F F F F F P

struct talon

F F F F F F F F

2. Given the following output from gdb, what will be printed out by the last gdb command? (2pts)

(gdb) p buf

$1 = (unsigned char *) 0x8402260
(gdb) x/40xb buf
0x8402260: 0x67 0xc6 0x69 0x73 0x51 0xff 0x4a 0xec
0x8402268: 0x29 0xcd 0xba 0xab 0xf2 0xfb 0xe3 0x46
0x8402270: 0x7c 0xc2 0x54 0xf8 0x1b 0xe8 0xe7 0x8d
0x8402278: 0x76 0x5a 0x2e 0x63 0x33 0x9f 0xc9 0x9a
0x8402280: 0x66 0x32 0x0d 0xb7 0x31 0x58 0xa3 0x5a
(gdb) p/x ((struct overwatch*)buf)->slot3.mei

$2 = ……

What is printed: $2 = 0xfbf2

7

3. Based on the following assembly code and incomplete C code. Please fill out the table
with the missing C code that corresponds to the blanks in the C code. (4 pts)

00000000000005fa <capture_the_flag>:

5fa: 89 fe mov %edi,%esi
5fc: 8b 05 36 0a 20 00 mov 0x200a36(%rip),%eax # 201038 <overwatch+0x8>
602: 39 05 18 0a 20 00 cmp %eax,0x200a18(%rip) # 201020 <talon>
608: 0f 9f c1 setg %cl
60b: 48 8d 05 12 0a 20 00 lea 0x200a12(%rip),%rax # 201024 <talon+0x4>
612: 48 39 05 17 0a 20 00 cmp %rax,0x200a17(%rip) # 201030 <overwatch>
619: 76 36 jbe 651 <capture_the_flag+0x57>
61b: 83 c9 80 or $0xffffff80,%ecx
61e: 0f be 05 19 0a 20 00 movsbl 0x200a19(%rip),%eax # 20103e <overwatch+0xe>
625: 0f bf 15 10 0a 20 00 movswl 0x200a10(%rip),%edx # 20103c <overwatch+0xc>
62c: 01 d0 add %edx,%eax
62e: 0f be 15 f2 09 20 00 movsbl 0x2009f2(%rip),%edx # 201027 <talon+0x7>
635: 0f be 3d ea 09 20 00 movsbl 0x2009ea(%rip),%edi # 201026 <talon+0x6>
63c: 01 fa add %edi,%edx
63e: 29 d0 sub %edx,%eax
640: 85 c0 test %eax,%eax
642: 7e 12 jle 656 <capture_the_flag+0x5c>
644: 83 e6 7f and $0x7f,%esi
647: 40 38 ce cmp %cl,%sil
64a: 0f 9f c0 setg %al
64d: 0f b6 c0 movzbl %al,%eax
650: c3 retq
651: 83 ce 80 or $0xffffff80,%esi
654: eb c8 jmp 61e <capture_the_flag+0x24>
656: 83 e1 7f and $0x7f,%ecx
659: eb ec jmp 647 <capture_the_flag+0x4d>
000000000000065b <main>:

65b: bf 00 00 00 00 mov $0x0,%edi
660: e8 95 ff ff ff callq 5fa <capture_the_flag>
665: f3 c3 repz retq
667: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
66e: 00 00

struct overwatch overwatch;
struct talon talon;
int capture_the_flag(char bias) {
 char winner = 0;
 if (talon.____1____ > overwatch.____2____) { winner = 0x1; }
 if (overwatch.____3____ > &talon.____4____) { winner |= 0x80; }
 else { bias |= 0x80; }
 int overwatch_team = overwatch.____5____ + overwatch.____6____;
 int talon_team = talon.____7____ + talon.____8____;
 if (overwatch_team - talon_team > 0) { bias &= 0x7f; } else { winner &= 0x7f; }
 return bias > winner;
}

int main() {
 return capture_the_flag(0x00);
}

8

Fill in your answers here:

Blank Number Missing C Code

1 moira

2 mercy

3 tracer

4 reaper

5 winston

6 brigite

7 sombra

8 widowmaker

9

Question 6. Stack of Facts (8 pts)

Here is a recursive function: func(int x):

0000000000400b5d <func>:

 400b5d: 83 ff 01 cmp $0x1,%edi
 400b60: 7f 06 jg 400b68 <func+0xb>
 400b62: b8 01 00 00 00 mov $0x1,%eax
 400b67: c3 retq

 400b68: 53 push %rbx
 400b69: 89 fb mov %edi,%ebx
 400b6b: 8d 7f ff lea -0x1(%rdi),%edi
 400b6e: e8 ea ff ff ff callq 400b5d <func>

 400b73: 0f af c3 imul %ebx,%eax
 400b76: 5b pop %rbx
 400b77: c3 retq

1. Suppose you call the recursive function func(3). Draw the stack when func(1) is entered.

If you don’t know a value, write “old” and then the value name. (eg. old %rax). (5pts)

[Return Address for Calling Function]

old %rbx

0x400b73

3 (%rbx)

0x400b73

(Assume each entry is 8 bytes, and don’t use spaces you don’t need!)

2. Figure out what this function is doing. (3pts)

What does this function do?
(no more than one sentence)

returns factorial of input

10

Question 7. The Phantom 33 (8 pts)
Dear CS33: Attached is the final phase, removed from the bomblab because I couldn’t solve it.
0000000000400b9c <get_magic_value>:
 400b9c: 48 8b 04 24 mov (%rsp),%rax
 400ba0: c3 retq

0000000000400ba1 <phase_8>:
 400ba1: 53 push %rbx
 400ba2: ba 10 00 00 00 mov $0x10,%edx
 400ba7: be 00 00 00 00 mov $0x0,%esi
 400bac: e8 7f e2 00 00 callq 40ee30 <__strtoul>
 400bb1: 48 89 c3 mov %rax,%rbx
 400bb4: b8 00 00 00 00 mov $0x0,%eax
 400bb9: e8 de ff ff ff callq 400b9c <get_magic_value>
 400bbe: 48 39 d8 cmp %rbx,%rax
 400bc1: 74 12 je 400bd5 <phase_8+0x34>
 400bc3: 80 3c 18 21 cmpb $0x21,(%rax,%rbx,1)
 400bc7: 74 18 je 400be1 <phase_8+0x40>
 400bc9: b8 00 00 00 00 mov $0x0,%eax
 400bce: e8 b4 ff ff ff callq 400b87 <explode_bomb>
 400bd3: 5b pop %rbx
 400bd4: c3 retq
 400bd5: b8 00 00 00 00 mov $0x0,%eax
 400bda: e8 7e ff ff ff callq 400b5d <phase_defused>
 400bdf: eb f2 jmp 400bd3 <phase_8+0x32>
 400be1: b8 00 00 00 00 mov $0x0,%eax
 400be6: e8 87 ff ff ff callq 400b72 <s3cr3t_phase>
 400beb: eb e6 jmp 400bd3 <phase_8+0x32>

Also, I doubt this will be useful, but %rsp is 0x00676f7479610d0a when you enter phase_8.

Please let me know which input string will defuse this phase, and also how to find the secret
phase. Return this table to me at your earliest convenience:

String to defuse: “4197310”

String for s3cr3t: “!”

Sincerely, Prof. Tony
PS: I found this online, this actually might be useful.

11

12

