20F-COMSCI33-1 Midterm

RYAN VUONG

TOTAL POINTS

45 /60

QUESTION 1
Multiple Choice 12 pts

11 Binary vs other base? 2/2

+ 0 pts Click here to replace this description.

v + 2 pts Click here to replace this description.

+ 1.9 pts format penalty

1.2 Data storage in address space 2/2

+ 0 pts Click here to replace this description.

v + 2 pts Click here to replace this description.

+ 1.9 pts Format penalty

1.3 Implements “x * 2”7 0/2

v + 0 pts Click here to replace this description.

+ 2 pts Click here to replace this description.

+ 1.9 pts Format Penalty

1.4 Implements “x/ 27?2/ 2

+ 0 pts Incorrect

v + 2 pts Click here to replace this description.

+ 1.9 pts Format Penalty

1.5 Calling convention 2/ 2

+ 0 pts Click here to replace this description.

v + 2 pts Click here to replace this description.

+ 1.9 pts Format Penalty

1.6 Value comparison 2/ 2

+ 0 pts Click here to replace this description.

v + 2 pts Click here to replace this description.

+ 1.9 pts Format Penalty

QUESTION 2
Bit Manipulation g pts

21funcl1/4
+ 4 pts Correctly states that funcl rotates a to the
left by b, or states that funcl swaps two sections of
bits in a separated by point b
v + 1 pts Alludes that a is left shifted by b bits and
stored in P

+ 0 pts Incorrect

22func24/a
v + 4 pts Correctly states that func2 is the absolute
value function
+ 1 pts Alludes that negative and positive values are
treated differently

+ 0 pts Incorrect

QUESTION 3
Novel Numbers 7 pts

3.11-Binary Tmin 0.5/0.5
- 0.5 pts Incorrect
v - 0 pts Correct

3.21- Decimal Tmin 0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.31- Binary Tmax 0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.41-Decimal Tmax 0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.51-Binary-10.5/0.5
v - 0 pts Correct

- 0.5 pts Wrong

3.61-Binary -0 0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.71-Binary t0 0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.8 2 - Binary Largest Normalized Number
0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.9 2 - Decimal Largest Normalized Number

0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.10 2 - Binary Smallest Positive Normalized

Number 0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3.1 2 - Decimal Smallest Positive

Normalized Number 0.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3122 - Binary -10.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3132 -Binary-00.5/0.5
v - 0 pts Correct
- 0.5 pts Wrong

3142 - Binary +0 0.5/ 0.5
v - 0 pts Correct
- 0.5 pts Wrong

QUESTION 4
Pointy %rax 7 pts

41addgl1/1
v - 0 pts Correct
-1 pts Wrong

4.2 addg2 1/1
v - 0 pts Correct
-1 pts Wrong

43leaql1/1
v - 0 pts Correct
-1 pts Wrong

4.4leag21/1
v - 0 pts Correct
-1 pts Wrong

45 movqgl1/1
v - 0 pts Correct
-1 pts Wrong

46 movqg2 1/1
v - 0 pts Correct
-1 pts Wrong

47cmpqg1/1
v - 0 pts Correct
-1 pts Wrong

QUESTION 5
Struct and Union 10 pts

5.1 Struct overwatch 1/2
- 2 pts Incorrect
- 0.1 pts \-5% for bad formatting
- 0 pts Correct
v -1 pts Partial Credit

5.2 Struct talon 2/ 2
v - 0 pts Correct

- 2 pts Click here to replace this description.

- 0.1 pts 5% off for bad formatting
- 1 pts Partial credit

5.3 GDB print1/2
- 0 pts Correct
- 2 pts Incorrect
-1 pts Incorrect Endianness
v -1 pts Incorrect Output
- 0.1 pts \-5% for bad formatting
- 0.05 pts \-5% for bad formatting

Answer: Oxfbf2

The output should be the whole short in

hexadecimal, not the bytes separately.

5.4 Missing code 10.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

5.5 Missing code 2 0.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

5.6 Missing code 3 0.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

5.7 Missing code 4 0.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

5.8 Missing code 5 0.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

5.9 Missing code 6 0.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

5.10 Missing code 7 0.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

Page 3

5.11 Missing code 8 0.5/0.5
v - 0 pts Correct

- 0.5 pts Incorrect

QUESTION 6
Stack s pts

6.1Recursions5/5
v - 0 pts Correct

- 1 pts we know the value of rbx the second time we

push it to stack
- 5 pts Wrong
- 2 pts wrong return addr
- 1 pts extra fields
- 1.5 pts specify return address
- 5 pts missing
- 4 pts partial

- 1.5 pts wrong values of rbx

6.2 Interpret func 3/3
v - 0 pts Correct
- 3 pts Missing
- 3 pts Wrong
- 2 pts Partial

QUESTION 7
Phantom 33 8 pts

71Defuse o0/4
- 0 pts Correct
- 1 pts Slightly off / typo
- 1 pts Base 10 instead of hex
- 3 pts On the right track, but incorrect

v - 4 pts Incorrect

7.2s3cr3to/a
- 0 pts Correct
- 1 pts Close but not correct
- 3 pts On the right track but incorrect

v - 4 pts Incorrect

CS33: Introduction to Computer Organization
Fall 2020 Midterm

Name: | Ryan Vuong

UID: 505264601

Rules/Instructions:
e All of your answers go into red tables like this:

What's the answer Your ancwer here

e When complete, save the exam as a PDF. (if there is a technical problem, just save as
docx)

e Turn the exam in on CCLE, before 2:30pm PST (normal time), 9:30pm PST (makeup
time). The exam is designed for 2 hours, but we are giving you an extra 30 minutes in
case you have any technical difficulties.

e This is an open notes exam. By the honor system, you may not discuss exam
questions/solutions/experiences/thoughts/etc. with any person for 12 hours after the
exam start time.

e Please do not alter which page each question is on, or you will be penalized. This is for
compatibility with gradescope.

Notes:

e There are 60 points total, but the exam is graded out of 50. (ie. the exam is pre-curved
so that there are 10 extra credit points possible)

e You may ask for questions on the Piazza live Q&A. These questions MUST be made
privately, and we will make public the questions which are relevant to the whole class.
TAs and | will post any clarifications to the Piazza live Q&A, so it may be a good idea to
check for clarifications before the exam is over.

e If the architecture of the machine is not specified, assume that the question is

being asked in the context of a 64-bit little endian x86 machine.
Finally, please follow the university guidelines in reporting academic misconduct.

You may begin once you have read the rules above.

Question 1. Multiple Choice (12 pts)

For the following multiple choice questions, select all that apply. If none of the answers are
correct, simply leave the question blank. (2pts each, no partial credit)

1. Why do machines store information with binary (ie. base 2) instead of another base?
a. Binary is more compact (eg. than decimal), so it saves memory space.
b. Many circuit components are bistable, making it convenient for circuit design.
c. Computer arithmetic is more efficient with a binary representation at the circuit
level.
d. Using higher bases makes it difficult to store numbers defined in lower bases.

2. What kind of data isn’t stored within the address space of a program?
a. Register Values

Stack

Heap

Global Variables

Program Binary

®»ooo

3. Suppose the variable “x” was defined as an “unsigned int” in C, and is stored in the “a”
register (rax/eax/ax, etc.).
Which of the following instructions correctly implements “x * 277
a. leal (%$eax, %eax, 1), $eax
. movl ($eax, $eax), $eax
addl ($eax), $eax
addl (,%$eax, 1), $eax
addl $eax, $eax
sall 2, $eax
. mulw 2, %$ax

m -h®m Q 0 ©

4. Suppose the variable “x” was defined as an “unsigned int” in C, and is stored in the “a”
register (rax/eax/ax, etc.).
Which of the following instructions correctly implements “x / 2?
a. sall 2, %$eax

b. sarl 2, $eax
c. sall 2, %$eax
d. sarl 1, $eax
e. divq 2, $rax

5. Which of the following registers are guaranteed to have a different value before and after
a call instruction in x86-647?
a. rax
rbx
rdi
rbp
rsp

®oo0o

6. Which of the following C statements are true?
a. (8/5)==(8.0/5.0)
b. (8/5) == (long) (8.0/5.0)
c. (float) (8/5) == (8.0/5.0)
d. (float) (8/5) == (long) (8.0/5.0)

Multiple Choice Write your answers here: (eg: a,b,d)
Question Number

1. b, c

2 a

3. a, e,f

4 e

5.

6 b, d

Question 2. A Bit of Manipulation (8 Pts)

Your friend gave you the solution to two of the datalab questions (nice friend!), but forgot to tell
you which they were. Try to decipher them!

1. func1 (4 Pts)

Hint: 1<=b<=31

funcl(int a, int b) {

int P = a << b;
int @ = a »» (33 + ~b);
int mask = ~8 << b;

Q &= ~mask;
return P|Q;

1
]

Your answer in the cell below:

What does this function do? [Returns a multiplied by 2”b.
Please use only one or at

most two sentences.

2. func2 (4 Pts)

func2(int x) {
int m = x»»31;
return (x * m) + ~m + 1;

2
J

Your answer in the cell below:

What does this function do? | Returns the absolute value of x.
Please use only one or at
most two sentences.

Question 3. Novel Numbers (7 pts)

Suppose we have a new machine where bytes are only 7 bits long, and there are no other
datatypes. Luckily, we can still represent integer and floating point numbers easily.

1. Assuming standard two’s complement representation, what are the following values:

Binary Decimal
Tmin 1000000 -64
Tmax 0111111 63
-1 1111111
-0 0000000
+0 0000000

2. Assume we have a 7-bit floating point representation with 3 bits for the exponent, and
otherwise we follow the normal floating point representation. (please remember that
E=111 and E=000 is reserved for infinity/nan/denorm) What are the following values:

Binary Decimal
Largest Normalized Number | 0110111 15
Smallest Positive 0001000 0.25
Normalized Number

o 1011000
-0 1000000
+0 0000000

Question 4. How pointy is your rax? (7 pts)

Based on each instruction individually, determine whether you think %rax is a pointer *before*
the instruction is executed.

You have three options:

Yes -- There is evidence that %rax is a pointer.

No -- There is evidence that %rax is not a pointer.

Maybe -- There isn’t evidence that %rax is a pointer or not a pointer.

Is rax a pointer? (Options: Yes, No, Maybe)
addq %rax, %rax No
addg %rbx, %rax Maybe
leaq (%rbx, %rax, 4), %rcx No
leaq (%rax, %rbx, 4), %rcx Maybe
movq (%rbx, %rax, 4), %rcx No
movq (%rax, %rbx, 4), %rcx Yes
cmpg $5, %rax No

Question 5. Structures and Unions (10 pts)
Use the following structure definitions to answer the questions in this section.

struct overwatch {

long* tracer;

int mercy;

union {
char winston;
short mei;

} slot3;

char brigite;

s

struct talon {
int moira;
short reaper;
char sombra;
char widowmaker;

};

1. Each cell in the following tables represents a byte. Each byte that is part of the struct can be
part of a field (F) or padding (P). You need to fill out the table with letters (F or P) categorizing
each byte. If a cell represents a byte that is not part of the data structure, leave it blank. (4pts)

struct overwatch

FIF|F|F|F|F|F|F|F|F|F|F|F|FI|F

struct talon

FIF|F|F|F|F|F|F

2. Given the following output from gdb, what will be printed out by the last gdb command? (2pts)

(gdb) p buf

$1 = (unsigned char *) 0x8402260

(gdb) x/40xb buf

0x8402260: 0x67 0xc6 0x69 0x73 ox51 oxff ox4a oxec
0x8402268: 0x29 oxcd Oxba Oxab oxf2 oxfb Oxe3 ox46
0x8402270: Ox7c Oxc2 0x54 oxf8 ox1b Oxe8 oxe?7 ox8d
0x8402278: 0x76 Ox5a Ox2e 0x63 0x33 ox9f Oxc9 Ox9a
0x8402280: 0x66 0x32 oxod 0xb7 Ox31 0x58 Oxa3 Ox5a
(gdb) p/x ((struct overwatch*)buf)->slot3.mei

$2 = ...

What is printed: $2 = oxfb oxf2

3. Based on the following assembly code and incomplete C code. Please fill out the table
with the missing C code that corresponds to the blanks in the C code. (4 pts)

000000005 Ta <capture_the_flag>:

5fa: 89 fe mov %edi,%esi
5fc: 8b 05 36 Qa 20 00 mov 0x200a36(%rip) , %eax # 201038 <overwatch+0x8>
602: 39 05 18 0a 20 00 cmp %eax,0x200al18(%rip) # 201020 <talon>
608: of 9f c1 setg %cl
60b: 48 8d 05 12 @a 20 00 lea 0x200al12(%rip),%rax # 201024 <talon+0x4>
612: 48 39 05 17 @a 20 00 cmp %rax,0x200al7 (%rip) # 201030 <overwatch>
619: 76 36 jbe 651 <capture_the_flag+0x57>
61b: 83 c9 80 or $oxffffff80,%ecx
6le: of be 05 19 @a 20 00 movsbl ©x200al9(%rip),%eax # 20103e <overwatch+0xe>
625: of bf 15 10 0a 20 00 movswl 0x200all(%rip),%edx # 20103c <overwatch+0xc>
62C: 01 do add %edx, %eax
62e: of be 15 f2 09 20 00 movsbl ©x2009f2(%rip),%edx # 201027 <talon+0x7>
635: of be 3d ea 09 20 00 movsbl ©x2009ea(%rip),%edi # 201026 <talon+0x6>
63c: 01 fa add %edi, %edx
63e: 29 do sub %edx, %eax
640: 85 ¢O test %eax,%eax
642: 7e 12 jle 656 <capture_the_flag+0x5c>
644: 83 e6 7f and $0x7f,%esi
647: 40 38 ce cmp %cl,%sil
64a: of 9f co setg %al
64d: of b6 co movzbl %al,%eax
650: c3 retq
651: 83 ce 80 or $oxffffff80,%esi
654: eb c8 jmp 6le <capture_the_flag+0x24>
656: 83 el 7f and $0x7f, %ecx
659: eb ec jmp 647 <capture_the_flag+0x4d>
000000PPYYR65b <main>:
65b: bf 00 00 00 00 mov $0x0, %edi
660: e8 95 ff ff ff callqg 5fa <capture_the_flag>
665: 3 c3 repz retq
667: 66 of 1f 84 00 00 00 nopw @x@(%rax,%rax,1)
66e: 00 00
struct overwatch overwatch;
struct talon talon;
int capture_the_flag(char bias) {
char winner = 0;
if (talon. il > overwatch. 2) { winner = 0x1; }
if (overwatch._ 3 > &talon.___ 4) { winner |= 0x80; }
else { bias |= 0x80; }
int overwatch_team = overwatch. 5+ overwatch. 6
int talon_team = talon.__ 7 + talon.___ 8

if (overwatch_team - talon_team > 0) { bias &= 0x7f; } else { winner &= Ox7f; }

return bias > winner;

}

int main() {
return capture_the_flag(0x00);

Fill in your answers here:

Blank Number | Missing C Code
1 moira

2 mercy

3 tracer

4 reaper

5 brigite

6 slot3.mei

7 widowmaker

8 sombra

Question 6. Stack of Facts (8 pts)

Here is a recursive function: func(int x):
0000000000400b5d <func>:

400b5d: 83 ff o1
400b60: 7f 06

400b62: b8 01 00 00 00
400b67: c3

400b68: 53

400b69: 89 fb

400b6b: 8d 7f ff
400bé6e: e8 ea ff ff ff
400b73: of af c3
400b76: 5b

400b77: c3

cmp
jg
mov
retq
push
mov
lea
callq
imul
pop
retq

$0x1,%edi
400b68 <func+0xb>
$0x1,%eax

%rbx

%»edi, %ebx
-0x1(%rdi),%edi
400b5d <func>
%»ebx, %eax

%rbx

1. Suppose you call the recursive function func(3). Draw the stack when func(1) is entered.
If you don’t know a value, write “old” and then the value name. (eg. old %rax). (5pts)

[Return Address for Calling Function]

old %rbx

0x400b73

3

0x400b73

(Assume each entry is 8 bytes, and don’t use spaces you don’t need!)

2. Figure out what this function is doing. (3pts)

What does this function do?
(no more than one sentence)

Returns x!

10

Question 7. The Phantom 33 (8 pts)
Dear CS33: Attached is the final phase, removed from the bomblab because | couldn’t solve it.

0000000000400b9¢c <get_magic_value>:
400b9c : 48 8b 04 24 mov (%rsp),%rax
400bao0: c3 retq

0000000000400bal <phase_8>:

400bal: 53 push %rbx

400ba2: ba 10 00 00 00 mov $0x10, %edx

400ba7: be 00 00 00 00 mov $0x0,%esi

400bac: e8 7f e2 00 00 callg 40ee30 <__strtoul>
400bb1l: 48 89 c3 mov %rax, %srbx

400bb4: b8 00 00 00 00 mov $0x0, %eax

400bb9: e8 de ff ff ff callg 400b9c <get_magic_value>
400bbe: 48 39 d8 cmp %rbx, %rax

400bcl: 74 12 je 400bd5 <phase_8+0x34>
400bc3: 80 3c 18 21 cmpb $0x21, (%rax,%rbx,1)
400bc7: 74 18 je 400bel <phase_8+0x40>
400bc9: b8 00 00 00 00 mov $0x0, %eax

400bce: e8 b4 ff ff ff callg 400b87 <explode_bomb>
400bd3: 5b pop %rbx

400bd4 : c3 retq

400bd5: b8 00 00 00 00 mov $0x0, %eax

400bda: e8 7e ff ff ff callg 400b5d <phase_defused>
400bdf: eb f2 jmp 400bd3 <phase_8+0x32>
400bel: b8 00 00 00 00 mov $0x0, %eax

400beb6: e8 87 ff ff ff callg 400b72 <s3cr3t_phase>
400beb: eb e6 jmp 400bd3 <phase_8+0x32>

Also, | doubt this will be useful, but %rsp is 0x00676f7479610d0a when you enter phase_8.

Please let me know which input string will defuse this phase, and also how to find the secret
phase. Return this table to me at your earliest convenience:

String to defuse: This question is very hard

String for s3cr3t: 33

Sincerely, Prof. Tony
PS: | found this online, this actually might be useful.

unsigned long int strtoul (const char* str, char®** endptr, int base);
Convert string to unsigned long integer

Parses the C-string str, interpreting its content as an intearal number of the specified base, which is returned as an
value of type unsigned long int.

11

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 a1 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 a3 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24§ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 a5 E 101 65 e
& 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL) 39 27 ' 71 a7 G 103 67 g
] 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB) 41 29) 73 49 [105 69 i
10 A [LINE FEED] 42 2A * 74 aA | 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 B K 107 6B k
12 C [FORM FEED) a4 o ., 76 ac L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 aD M 109 60 m
14 E [SHIFT OUT) 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] a7 2F / 79 aF 0 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 o0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 v
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 3 4 84 54 T 116 74t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 u 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 3% 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A 90 5A Z 122 TA 2
27 1B [ESCAPE] 59 3B 91 58 [123 7B {
28 1C [FILE SEPARATOR] 60 3 < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50 1 125 D)
30 1E [RECORD SEPARATOR] 62 3E > 94 SE - 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F - 127 7F [DEL]

12

