Fall2021-CS33 midterm

MATTHEW FIORELLA

TOTAL POINTS

54.5/62

QUESTION 1
Question 114 pts

11 2/2
v - 0 pts correct
- 2 pts incorrect or blank, correct answer b and d.

No partial credit available.

12 0/2
- 0 pts Correct
v - 2 pts incorrect or blank answer , correct answer is
c,d

1.3 2/2
v - 0 pts Correct

- 2 pts incorrect , answer should be blank

14 0/2
- 0 pts Correct
v - 2 pts incorrect or blank, correct answer should be

e

15 2/2
v - 0 pts Correct

- 2 pts incorrect

16 2/2
v - 0 pts Correct

- 2 pts Incorrect

17 2/2
v - 0 pts Correct

- 2 pts Incorrect

QUESTION 2
Question 2 8 pts

21 2/2
v - 0 pts Correct

- 2 pts incorrect, answer should be 32

22 2/2
v - 0 pts Correct
- 2 pts incorrect or blank, the correct answer should
be 16

23 2/2
v - 0 pts Most
- 2 pts Least
- 2 pts Other Wrong Answer

24 0/2
- 0 pts Correct
- 2 pts Incorrect
v - 2 pts float*
- 2 pts char
- 2 pts Blank
-1 pts Vague: both

QUESTION 3
Question 3 5 pts

31Zero1/1
v +1 pts Correct

+ 0 pts Incorrect

3.20ne1/1
v + 1 pts Correct

+ 0 pts Incorrect

3.3 Smallest denormalized number other

than 0 1/1
v +1 pts Correct

+ 0 pts Incorrect - 1 pts should be array of two pointers

- 0.5 pts missing int

3.4 Smallest possible normalized number 1/ -1 pts location of pointer symbol
1 - 2 pts wrong/blank
v + 1 pts Correct - 1.5 pts not just words, need C declaration
+ 0 pts Incorrect
QUESTION 6
3.5NaN 1/1 6 Question 5a 6/6
v +1 pts Correct v - 0 pts Correct
+ 0 pts Incorrect - 2 pts Wrong sub/add amount or no sub/add

- 1 pts extra instructions

QUESTION 4 - 1 pts Missing push/pop
Question 4.16 pts -4 pts No push/pops
- 1 pts Missing add/sub
41a1/1 - 1 pts Wrong order Prologue
v - 0 pts Correct - 1 pts Wrong order epilogue
- 1 pts Wrong - 1 pts Missing second push/pop
- 6 pts Blank / Not correct
42b1/1 - 1 pts add/sub swapped but correct amounts
v-Opts1 - 1 pts pushing/popping wrong thing
-1pts not 1 - 1 pts pushing/popping wrong thing x2
- 1 pts misusing leaq instead of add/subq
43C1/1
v-0pts 8 QUESTION 7
-1pts not 8 7 Question 5b 3/4
- 0 pts Correct
44d1/1

- 2 pts No subtract/add

v - 0 pts Correct v -1 pts Not enough subtracted/added from stack

-1pts not 2 - 1 pts extra operations
-1 pts Wrong order
45e1/1 - 1 pts missing push
v - 0 pts Correct - 1 pts missing pop
-1pts not 40 - 1 pts Impossible subtraction/addition (not multiple
of 8)
a6f1/1

- 4 pts Wrong / Blank

v -
0 pts Correct - 1 pts Missing corresponding sub/add or amount

-1pts not 2 mismatch
- 1 pts misusing leaq instead of add/sub
QUESTION 5
5 Question 4.2 2/2 QUESTION 8
v/ - 0 pts Correct Question 6 7 pts

- 1 pts array dimension $$[2]/5]$$

8.1Blank 0 0.5 /1
+ 1 pts Correct
v + 0.5 pts Partially correct

+ 0 pts Incorrect

8.2Blank 11/1
v + 1 pts Correct
+ 0.5 pts Partially correct

+ 0 pts Incorrect

8.3 Blank 2 1/1
v +1 pts Correct
+ 0.5 pts Partially correct

+ 0 pts Incorrect

8.4 Blank 3 1/1
v +1 pts Correct
+ 0.5 pts Partially correct

+ 0 pts Incorrect

8.5Blank 4 1/1
v - 0 pts Correct
-1 pts Incorrect

- 0.5 pts Partially incorrect

8.6 Blank 51/1
v - 0 pts Correct
-1 pts incorrect

- 0.5 pts Partially incorrect

8.7Blank 6 1/1
v - 0 pts Correct

-1 pts Incorrect

QUESTION 9
9 Question74/4
+ 1 pts Infinity&Nan
+ 0.5 pts Only Zero or Only Infinity or Only NaN
+ 0 pts Incorrect Case
v + 1 pts Literally true but without being insightful
v + 3 pts Functionality Correct

Page 3

+ 0.5 pts Many True Statements
+ 0 pts Incorrect Function

+ 0 pts Funniness Bonus

+ 1 pts Normalizes Floating Points

+ 2.5 pts Right but what's an unsigned float?

QUESTION 10

10 Question 86/6
v + 1 pts Binary Search Tree
+ 0 pts Wrong Datastructure
v +5 pts 11 or b (or 12)
+ 0.5 pts Good Try!
+ 0 pts Good Try...
+ 0 pts Blank
+ 0 pts Funny answer
+ 4 pts Sooo close!
+ 5 pts close enough!

+ 3 pts There's definitely some good stuff herel

CS33: Intro Computer Organization | Name: M(f»{’!’hew Fmre“a

Fall 2021 Midterm D 6706 [)-q3 72q

(Please write as legibly as possible!}

This is an open book, open notes exam, but you cannot share books/notes. Please follow the
university guidelines in reporting academic misconduct.

Note: If the architecture of the machine is not specified, assume that the question is being asked
in the context of a 64-bit little endian x86 machine, running Linux.

Please wait until everyone has their exam to begin. We will let you know when to start.

Good luck!
Points Possible
1. Multiple Choice 14
2. Baba.is Struct 8-
3. Notable Floats 5
4. Array Interpretation 8
5. Imaginary Stack Allocator 10
6. Tricky Switch ' 7
7. Floating Point Mystery 4
8. Two Birds, One Bomb 6
Total 50
+12 bonus points

Question 1. Multiple Choice (14 points)

For the following multiple choice questions, select all answers that apply. If none are correct,
leave the question blank.-Put your answers in the table on the next page. (2pts each, no partiaf)

1. Whatis a difference between unsigned and signed integer representations?
a. Unsigned integers can store a wider range for the same number of bits.
@ Right-shifting an unsigned integer uses “logical” shift, while right-shifting a signed
integer uses “arithmetic” shift.
¢. Ina C expression that operates on two different datatypes, an unsigned datatype
will take precedence over a floating-point datatype, but a signed datatype will not.
Itis meaningful to ask if a signed number is greater-than or equal to zero, while
the same is meaningless for unsigned numbers.

2. Suppose you use the objdump command to disassemble a function, and you see this:

00000000084080595 <func>:
400595: 53 push %rbx

What does the "53" in the above line represent?
a. The function has a length (in terms of instructions) of 53 bytes.
b. The push instruction is 53-bytes offset from the beginning of the function.
-c. “53" contains an encoding of the register %rbx.
@ “53" contains an encoding of the push operation.
e. Address 53 is the location of where a callee-saved register is pushed.

3. X86_64 contains an instruction which p'erforms a conditional move -- cmov --, which
moves one register to another based on the condition codes (aka. flags). This
instruction can sometimes be used to perform if-statement control flow. When is
performing if statements using conditional moves a better option than using ordinary
branch instructions?

. When the body of the if statement contains function calls.
P When the body of the if statement contains side effects.
)& When the body of the if statement contains many instructions.

4. X86_64 contains an instruction which performs an indirect jump -- jmp* --, which jumps
to a location specified in a memory table. This instruction can sometime be used to
perform switch-case-statement control flow. When is performing switch statements using
indirect jumps a better option than using ordinary branch instructions?

When there are many fall-through cases in the switch statement.

When there are few instructions in the case statements.

When there are many instructions in the case statements.

When the first case value is zero.

When the range of case values is contiguous.

@D

5. Suppose that the next C language standard contains an 11-bit unsigned integer
datatype. What would be a valid reason (or reasons) to reject this proposal?
a. There are already larger and smaller datatypes (e.g. 8-bit and 16-bit), so it's not

useful,

@ Modern ISA use byte-addressable memory, so accessing arrays of contiguous
11-bit integers would require extra instructions to extract the number.
c. For a two’s complement number to be well-defined, its size must be a multiple

of 2.

d. Having an 11-bit number would make it impossible to satisfy the datatype casting

rules in the C standard.

6. For what C datatypes is the concept of “endianness” irrelevant?

©

o 2 ®@

char

unsigned char

string (i.e. array of char)
int

float

7. What kind of control flow is contained in this assembly function? (see figure below)

poBeaaRe <func>:

89 18
af bf
B8d B¢
83 f9
7e Bh
39 fa
7t 84
g1 +f
eb ed

a) Loop (e.g. whileffor)
Conditional Branch (iflelse) ~ ©8@d2@0a
c. Indirect Branch a:
(switch/case) 2:
5
8:
b
d:
¥:
11:
13:
15:
Answer Table (list any correct answers) 17
1. |bd
2)
3 -
4 b,
5 |b.
6 |abc.
7 lab.

82 8
€3

de
3a
Q2

mov, %esi,Xeax

movswl kax, Zedx

lea {%rdx,%rdi,1),%ecx
cmp . $8x2,%ecx

Jle 18 <func+Bx1is>

cmp %edi,kedx

ig 15 <func+ox15>

add %edi,%edi

Jmp 2 <{func+oxi>

;mov ¥edi , keax

st L]

Question 2. Baba is Struct (8 Pts)

Consider the following structure, union, and array definitions:

typedef struct {
int baba;
short flag[5];
float* keke;
char key;

} noun;

typedef union {-
int hot;
short shut[5];
float* stop;
char open;

} property;

noun you[5];
property me[5];

10
8

Testis

// Note: Typedef here just means
that were are defining a struct
type that we can use later in the
array definition.

B 2 |
T £ K K

g 7 12
)ahf P(f:;\ f“'“ ket l‘—t, M

// Create an “arrays of structs”
and an “array of unions”

1. If &ou == 0 (i.e. if the address of you[0] is 2ero), at what address is you[1]?

9L

2. If&me == 0 (i.e. if the address of me[0] is zero), at what address is me[1]?

i

3. If we access "property.shutf1]", that will also access half of the bits in “property.hot”. Will
that be accessing the least significant bits of “hot” or the most significant?

YYMSI 4 |’7 ht/pt'(an F

4. Consider all the primitive data types within the arrays “you” and “me”. Which of these
are guaranteed to have their addresses aligned to a multiple of their size?

Qaablf

win

Question 3. Notable Floats (5 Pts)

The following table shows a number of “interesting” values for floating-point numbers, along with
their encoding into sign, exp, and frac fields.

Pattern sign exp frac

A 0 00..00 00..00
B 0 00..00 00..01_
C 0 00..01 11.11

D 0 £0..01 00..00
E 0 01.11 00..00
F 0 | 11..10 | 11,10
G 0 11..11 00..00
H (O 11.11 11.11

Match the following definitions to the interesting numbers above (write “A”, “B”, etc. in the box)
0.Zero A

1. One

.0 o
2. Largest Possible i 6 B .
Demormalized Number |} . % ~ L

3. Smallest Possible
Normalized Number

4. Not a Number (NaN)

Note: These patterns don't specify the number of bits, but that won’t matter for answering the

question. Assume the same strategy for representation of denormalized numbers, NaNs and
infinities as other IEEE 754 standard numbers.

Question 4. Array Interpretation (8 pts)

1. For the following datatype definitions, answer the following questions: (6pts)

e sizeof(array): What is the size of “array” in terms of number of bytes?
For this problem, we are only talking about the memory allocated for the variable “array”,
and not any other supporting data structures.

¢ How many dereferences?: List the number of memory dereferences that it would take
to access an integer for that datatype. In othér words, how many times do you have to
access memory total (how many loads), to eventually access a single integer. Include
the load of the integer itself.

Array Declaration sizeof(array) . How many deréferences?
int* array 8 | 1

1 |intaray(32] | 24 1

2 | int (*array)[5] 3 12

3 lint *arréy{S} o Ll'O . 2

2. What is the array declaration for the following array, represented visually below? (2pts)

array

Unallocated int [

Allocated pointer to unallocated int =2

4 | Datatype for array: | hx (x arroy 0]) [l] (5]

Question 5. Imaginary Stack Allocator (10pts)

Part 1: Suppose we have two functions, FuncP and FuncQ. FuncP calls FuncQ, and the stack

frames of both functions are depicted below.

All functions require a "prologue” and “epilogue” to manage the stack. The prologue allocates
stack space, and usually appears at the beginning of the function. The epilogue deallocates

stack space, and usually appears at the end of the function.

Based on the stack frame, write the prologue and epilogue for FuncQ. Don't use more

instructions than you need to.

Prologue for FuncQ:
push %orl2
push Yot bp

Sub §0x)0, Yorsp

Epilogue for Futhb
odd 0 20, Toesp
{)(IP /ofbp
(o °/o(!l

Stack Frames

Arg. 8 F
: u
Arg. 7 n
G
Return p
Address
Old ri2
F
Old rbp u
n
Unused c
(16 bytes) Q
Space for C
array
int array[4]
rsp->

Part 2: FuncR is another function, and its assembly is shown below. Fill in the prologue and

epilogue for this function too!

Prologue for FuncR:

push Yo rbx
sub fX, orqo

Epilogue for FuncR:

add M, %@p
Pp Jocby

___missing_FuncR_prologue_

movq %rdi, %rbx
movq $33, 8(%rsp)
movl $1234, %esi

leag 8(%rsp), %rdi
call FuncS

addg %rbx, %rax
___missing_FuncR_epilogue_

Question 6. Tricky Switch (7 pts)

Source Code

Compiled Assembly

switch
case
case
case
case
case
case

}

return

int func(int x, int y, int r) {

x) {

o: Blank @
1: Blank 1
2: Blank 2
3: Blank 3
4: Blank 4
5: Blank 5

Blank 6 >

func(int, int, int):

cmpl
ja
movl
jmp

L4:

.L7

.L6

.L5

.L3

.L18:

.L9

.quad
.quad
.quad
© .quad
.quad
.quad

: (used
addl

: (ot L
leal

ret

. gt Dy wse |

leal

ret

: (04e
movl
xorl
ret
cose O
movl

" Ret

: %75

movl

ret

$5, %edi
L9 %25
%edi, %edi
*,14(,%rdi, 8)
(hint, this is the
.18 jump table!l)
L7
.L6
.L5
.L5
L3

$6, %edx rjf:(o;

(%rdx,%rdx,4), %eax

L/
retarn Flf‘/'

(%rdx,%rsi,2), %eax /?

rifun ly 'H’/’

%edx, %eax eaﬁvYﬂ
%esi, %eax pplyrn r/\yl
[

-4, %
34, Heax m‘um«“l,’

%edx, %eax rd""l'\ r./‘

Reverse engineer the assembly code on the previous page to figure out what each case of the
switch-case statement is doing. Don’t forget about “break” statements!

Blank0 | =4 breaks
Blank 1 r,L:(p;
Blank 2 f‘i"l‘j,’ breab}

Blank 3 QWW%
Blank 4 ikt rsly; break;

Blank5 | = rAY; hreak)
Blanké -~ | r |

Question 7. Floating Point Mystery (4pts)

A long time ago, we used to put floating-point questions on the datalab. | found a solution to
one of these problems lying around, but can't figure out what it's doing anymore:

unsigned mystery_function(unsigned uf) { —_
unsigned sign = uf>>31; | 5% M?a,l;./e,(/rﬁ P“'"'i’e
unsigned exp = uf>>23 & OxFF; Geleds cut § o }NH’
unsigned frac = uf & 0x7FFFFF;§ekA90w} 13 F%a;hJﬁ
if (exp == 0) { if denorm :
frac = 2*frac; jeale frat < |
if (frac > Ox7FFFFF) { iFovrflw i tep :
frac = frac & OXTFFFFF; fuew gefed uner 12 frauhils with 22:d ik g 0
exp = 1; @$”\
¥
} else if (exp < oxFF) {TfwF inf
expt++; inrase ¢ by |
if (exp == OXFF) { i inF (ndifitn
frac = ©; wltegme s o, Number
}
}

peturn (sign << 31) | (exp << 23) | frac;

1. Inwhat cases will this function return the same thing as the input argument? (1pt)
whep uf =0 pr Ui tndF %y =hFF

2. What does the above function do? (3pts)

- The nge\ﬂ“ﬂn muus“p[fté the Ploot repregen‘rcd b/ e bit pmﬂem 177 2.

(Sb8 70“’:{2\0;“53/ pibe=
v

Question 8. Two Birds, One Bomb (6pts) 0

Dump of assembler code for function phase_5:

@X800805555555551c8
@X00005555555551cc
@XB80085555555551d1
PX000085555555551d6
0X000B5555555551db
OX80005555555551da
0X00005555555551e5
0X00005555555551ea
®X00005555555551ed
0X00P555555555 of
OX00RO5555555551F4
9X0008085555555551F9
®X00085555555551Fd
BX009005555555551fe
BXx0000555555555203
8X000B8555555555208

<+@>:
<+4>
<+9>:

<+14>:
<+19>:
<+22>:
<+29>;
<+34>:
<+37>:
<+39>:
<+44>:
<+49>;
<+53>:
<+54>:
<+59>:
<+64>:

sub
mov
mov
callg
mov
lea
callg
cmp
je
mov
callq
add
retq
mov
callg

Jmp

$0x8,%rsp -
$0xa, %edx "/peA\c-=$07~ S
$0x0,%esi Y ¢s; =2 ‘0‘&0
0Xx55555555507@ <strtol@plt>
%rax,%rsi 70 (5 = fied
Ox2e5b(%rip), %rdi
@x55555555519¢e <recurse>
$0x21, %eax
BX5555555551fe <phase_5+54>
$6x8, %eax

0x55555555517e <explode bomb> .
$0x8,%rsp

Ox555555558040 <nodes>

$0x0, %eax
0x555555555169 <phase_defused>
@X5555555551f9 <phase_5+49>

Dump of assembler code for function recurse:

@X0080555555555109¢ <405 : test %rdi,%rdi @ pdvoo
8X000085555555551a1 <+3>: je ©X5555555551¢2 <recurse+36>
OXB0805555555551a3 <+5>: push %rbx
amnssssssie o g renson o) (bbb
. p %esi,%ebx 1{:(0\(0 7= CM]Lmi)
OXx00805555555551a9 <+11>: jge ©x5555555551b8 <recurse+26>
0x00005555555551ab <+13>: mov @x8(%rdi),%rdi +di MWW Led-waly ¢
OX0@0005555555551af <+17>: callg @x55555555519e <recurse>
@X0B005555555551b4 <4225 add %ebx, heax
OX@BPB5555555551b6 <+24>; pop %rbx
OX0B805555555551b7 <+25>: retq :
©XB00B5555555551b8 <+26>: mov (%rdi),%rdi rdi‘7lﬁﬁh€
OX00005555555551bb <4293 callq ©x55555555519e <recurse>
@x080005555555551c0 <+345: jmp ©Xx5555555551b4 <recurse+22>
BX00BO5555555551¢C2 <+36>: mov $0x0, %eax
OX@00885555555551¢c7 <+41>: retq
(gdb) x/21gx &nodes .
@X555555558046 <nodes>: 0x068@555555558058 | 0x080B555555558070 0x000000000000000a eh;=1510
©X555555558058 <nodes+245: X000B555555558088.) Bx000B5555555588a0 Ox80800000000000005 Ch&tr 5
©x555555558070 <nodeSf48>: Bx00005555555580b8 NOx80P05555555580d0 9x000000000000000C Ehr=l2
Bx555555558088 <nodes+72>: 0x0000000000000000 ©X00B0000200PR000 9xX0000000000000001 e‘k:;\
©Xx5555555588a0 <nodes+965: 9X0000000000000000 0X00000000000000080 0X0060000060000007 eh;:'7
@x5555555580b8 <nodes+120>: OX2000600000020000 ©x0000000060000000 0x000000000000000b ehwpl\
0x555555558@d0: <nodes+144>: OX0000000000000000 0X0000000000000000 0X00600000000000011 prz,‘7
'261555« Ox&zﬁfo
é:/’
Ok (3022
b Y

Oxldo~ Geo00

So, it turns out that | need a new phase_5 for the bomb lab, because the old phase_5 is waaaay
too easy to cheat on ... therefore, | made this phase_5 for nextyear, with a similar kind of flavor.

Please help me make sure this new phase_5 has no errors by solving it for me. I've printed out
a couple functions and some memory values. Next year's class will surely thank you. ;)

Note that “strtol” just converts an asci string (specified by a char* input) into an integer.

1. What datastructure is this problem concerned with? Please be specific. (1 pt)
The lprchlém 18 conceind with ® {ree ey ench—withues
whete wh node [Io}ﬂﬁm)t“'ﬂ C/“'er holeS O-hd WMS a Va{uf (prc bauymﬁlw’)

2. \What string passed to “phase_5(char* input)” will defuse the phase? (5 pts)

)

wove it 7 mpuhjt/al
mae left F ;‘npdEVal

(BBl OO 1L

v ‘
Gy G080 (b Ot
W=\ pl7) sl

| (A0 SB=0x2)
T/hpw)/\l or ” J

