
1

CS33: Introduction to Computer Organization

Fall 2020 Final

Name: Weizhen Wang

UID: 605336075

Rules/Instructions:

● All of your answers go into red tables like this:

What’s the answer Your answer here

● When complete, save the exam as a PDF. (if there is a technical problem, just save as

docx)

● Turn the exam in on CCLE, before 10:00pm PST (normal time), 11:30am PST (makeup

time). The exam is designed for 3 hours, but we are giving you an extra 30 minutes in

case you have any technical difficulties.

● This is an open notes exam. By the honor system, you may not discuss exam

questions/solutions/experiences/thoughts/etc. with any person for 24 hours after the

exam start time.

● Please do not alter which page each question is on. Please do your best to keep the

question boxes approximately the same size. If choose to scan the exam, try to line

it up nicely. This is to help TAs suffer less while grading.

Notes:

● There are 75 points total, but the exam is graded out of 60. (ie. the exam is pre-curved

so that there are 10 extra credit points possible)

● You may ask for questions on Piazza (private posts only). Clarifications will be posted to

this google drive link: so it may be a good idea to check this before the exam is over.

● If the architecture of the machine is not specified, assume that the question is being

asked in the context of a 64-bit little endian x86 machine.

Finally, please follow the university guidelines in reporting academic misconduct.

You may begin once you have read the rules above.

https://docs.google.com/document/d/1iin0TnaQJKZLZrz9xIi_QtiZS2MSmMucXpAfmunAr1E/edit?usp=sharing

2

Question 1. Linking (4 pts)

Suppose src1.c and src2.c are compiled and linked separately. Determine if the following

combinations of source files would cause errors, and if not, what would get printed.

Feel free to solve this problem by compiling the source files and linking them together. If an

answer is undefined, simply write “undefined” in the result box.

src1.c src2.c Result?
(“compile error”, “linker
error” or describe output)

int i=1;

int main() {

 printf("%d\n",i);

}

int i=2;

int func() {

 i=3;

}

Linker Error

int i=1;
int main() {
 printf("%d\n",i);
}

int i;
int func() {
 i=3;
}

1

int i;
int main() {
 printf("%d\n",i);
}

int i;
int func() {
 i=3;
}

undefined

int i;
int main() {
 printf("%d\n",i);
}

int i=2;

int func() {

 int i=3;

}

2

3

Question 2. Virtual Memory (6 pts)

Given the following details about the memory system and the states of the TLB and Caches, fill

out the following information for a request for the virtual address: 0x597A0

● Main memory is 64 KB (2^16 bytes), byte-addressable with a 16 bit physical address.

● Virtual address is 20 bits long

● A page of memory is 4 KB (2^12 bytes)

● Direct mapped TLB with 8 entries

● 8-way set associative cache with 16 lines and cache block of 8 bytes

 VPN 0x59

 VPO/PPO 0x7A0

 TLB Index 001

 TLB Tag 01011 (0x0B)

 TLB Hit? (Y/N) N

 Page Fault? (Y/N) N

 PPN 0x2

 Physical Address 0x27A0

 Cache Offset 000

 Cache Index 0

 Cache Tag 0x27A

4

 Data 0x33

Question 3. Performance Analysis (7 pts)

Supposed the following code is compiled without aggressive compiler optimizations (ie. -Og like

we have been using in this class so far).

float sum, c[N], a[N], b[N];

int func(int j) {

 for(j = 0; j < N; j+=2) {

 sum += a[j+0] * b[j+0];

 sum += a[j+1] * b[j+1];

 }

}

Our processor has the following characteristics:

Func Unit Latency Cycles/Issue Func Unit Count in Processor

Float Multiplies 3 2 4

Float Adds 1 1 2

Loads 4 1 4

All other instructions 1 1 Infinite

1. What program optimization has been manually

applied to this code? (1pt)

Loop unrolling.

2. Assuming the above hardware characteristics,

what is the latency bound on CPE? (please

consider one “element” to be one multiply and

accumulate) (2pt)

1

3. Assuming the above hardware characteristics,

what is the throughput bound on CPE? (only

consider floating multiplies, adds and loads) (2pt)

1/2

4. In terms of N, roughly how many cycles does this

program take on an out-of-order processor with no

other bottlenecks other than instruction latency

and throughput? (1pt)

N

5. In as few words as possible, what optimization can

you perform to improve the performance? (1pt)

Separate accumulator

5

6

Question 4. Cache Design (6pts)

Suppose you are in charge of designing the next generation of Unintel CPUs, and you are

working on the cache design. The current proposal is to use a single direct mapped cache, with

a total capacity of 1KB, and a block size of 32B. Your job is to decrease the cache miss rate as

much as possible.

For each program, choose the optimization that minimizes the cache miss rate for that program:

Code Possible Optimizations Best Optimization (list
either A, B,or C)

#define N 65536

int a[N], b[N], c[N];

...

for(int i = 0; i < N; ++i) {

 c[i] = a[i] * b[i];

}

A. Increase Cache Capacity to
32KB

B. Increase Cache Block size to
128B

C. Increase the Associativity to
4-Way

B

#define N 256

int a[N], b[N][N], c[N];

...

for(int j = 0; j < N; ++j) {

 for(int i = 0; i < N; ++i)

{

 c[i] += a[i] * b[j][i];

 }

}

A. Increase Cache Capacity to
32KB

B. Increase Cache Block size to
128B

C. Increase the Associativity to
4-Way

B

#define N 256

int a[N], b[N], c[N];

...

for(int i = 0; i < N; ++i) {

 c[i] = a[i] * b[i];

}

A. Increase Cache Capacity to
2KB

B. Increase Cache Block size to
64B

C. Increase the Associativity to
4-Way

B

7

Question 5. Forking Around (7pts)

Here’s a really forked up program:

int main () {

 if (fork() == 0) {

 if (fork() == 0) {

 printf("O");

 }

 else {

 pid_t pid; int status;

 if ((pid = wait(&status)) > 0) {

 printf("D");

 }

 }

 }

 else {

 printf("E");

 exit(0);

 }

 printf("R");

 return 0;

}

1. List all possible program outputs (just put a space between answers if there is more than

one, leave empty if nothing can be printed, 5pts):

EORDR OERDR OREDR ORDER ORDRE

2. Will there be any zombies after this program runs? (yes or no, 2pts)

no

8

Question 6. Multiple Choice (16 pts)

For the following multiple choice questions, select all that apply. Ie. if none of the answers are

correct, simply leave the question blank. (2pts each, no partial credit)

1. What is the difference (or differences) between a TLB and on-chip cache?

a. The TLB is direct-mapped, while caches are set associative.

b. The TLB is indexed by the virtual address, while caches are indexed by the

physical address.

c. The TLB stores virtual-to-physical address translations, while caches store data.

d. The TLB can be slow, but caches need to be fast.

e. The TLB stores instructions, while caches store data.

2. Say we have two mutexes, implemented with binary semaphores, and two threads which

access them. Which of the following can cause deadlock:

a. The threads lock the mutexes in the same order.

b. The threads lock the mutexes in a different order.

c. The threads unlock the mutexes in the same order.

d. The threads unlock the mutexes in a different order.

3. Which stack protection techniques are vulnerable to return-oriented programming?

a. Stack Canaries

b. Address space layout randomization

c. Limiting Executable Code Regions

4. In malloclab, several students implemented an optimization where small blocks would be

allocated at the beginning of a free block, and large blocks would be allocated at the end

of a free block. In what way was this useful on some traces?

a. It increases the memory utilization due to less internal fragmentation.

b. It increases the memory utilization due to more coalescing opportunities.

c. It increases the throughput due to smaller free lists.

d. It increases the throughput due to better temporal locality in caches.

5. After a fork(), to access which datastructures should the resulting two processes

synchronize?

a. Heap

b. Stack

c. Registers

d. Globals

e. Program Code

9

6. What’s the purpose of the calling convention?

a. Enables virtual memory.

b. Helps enable separate compilation.

c. Improves external fragmentation.

d. Lowers the cost of creating threads.

7. Which of the following statements about C datatypes for x64_64 is true?

a. A float can represent any number a double can represent.

b. A double can represent any number an int can represent.

c. A char can represent any number a short can represent.

d. A long can represent any number a float can represent.

8. Which of the following do not necessarily involve exceptional control flow:

a. Context switch

b. Killing a process

c. Page Fault

d. Function Call

e. Segmentation Fault

f. Timer Interrupt

g. Data Cache Miss

h. TLB Miss (in x86_64)

Multiple Choice
Question Number

Write your answers here: (eg: a,b,d)

1. b, c

2. B

3. b,c

4.

5. d

6. b

7. b

8. D,g,h

10

Question 7. Jumbled Metaphors (5 pts)

As you reach the later stages of the exam, you may notice your mind becoming a jumbled pile

of mixed metaphors. Sort yourself out by finding 10 words related to this course in the mess of

letters below.

Rules: Words must be contiguous, and they may be forwards or backwards and either

horizontal or diagonal. One example is given “thread”, but don’t count this one! Don’t list extra

words, or we won’t grade the question. :)

Please List 10 Other Words Here:

float Link

cycle branch

kernel fault

pipeline page

EAX zombie

11

Question 8. Soulmate Simulator (9pts)

Suppose we want to create a soulmate simulator, where we randomly compare exactly two

people to see if they should be soulmates. For fun, let's represent each person as a thread.

We will call the “meet” function with many threads, and they will “mingle” to see if they are

soulmates. The only important thing for this problem, is that there should only be two threads in

the mingle() function at one time.

Wrong Code Your Code

int number_of_people_meeting=0;

void *meet(void *personID)

{

 //This loop tries to ensure

 // there’s only one thread waiting

 while(number_of_people_meeting >1) {

 // do nothing

 }

 number_of_people_meeting++;

 //This is where we check for soulmates

 //between threads.

 mingle();

 //We want at most 2 threads here!

 number_of_people_meeting--;

 return NULL;

}

void main()

{

 pthread_t t[N];

 for (i=0; i < N; i++) // make threads meet

 pthread_create(&t[i], 0,

 meet, (void *)i);

}

Sem_t mutex

void *meet(void *personID)

{

 sem_wait(&mutex);

 //This is where we check for soulmates

 //between threads.

mingle();

 //We want at most 2 threads here!

sem_post(&mutex);

 return NULL;

}

void main()

{

 sem_init(&mutex,0,2);

 pthread_t t[N];

 for (i=0; i < N; i++) // make threads meet

 pthread_create(&t[i], 0,

 meet, (void *)i);

}

1. Examine the “Wrong Code” Above. In as few words as possible, why can’t it guarantee

that only 2 threads are in the mingle function at the same time? (3pts)

Concurrent execution.

2. Using a counting semaphore, complete the code on the right to guarantee that only 2

threads are calling mingle at the same time. (6pts)

12

Question 9: Inopportune Overlap (7 pts)

Think about the following two cases of “overlap” between aspects of the virtual memory system.

1. Overlap of Variables -> Cache Lines: It’s possible to imagine that a single primitive

variable (eg. int,float,char) could “straddle” two different cache lines. (ie. if it starts at the

end of one cache line, and is long enough to proceed into the next cache line).

This complicates the hardware, because a single access to a variable from the CPU has

to combine the information from multiple cache lines (yuk!). However, unless you are

messing about with pointer arithmetic, this does not happen in C.

In as few words as possible, what aspect of the C language prevents a single primitive

variable (ie. int, float, char, pointer, etc.) from being mapped to multiple cache lines?

(2pts)

Padding of data structure

2. Overlap of Cache Lines -> Pages: It’s possible to imagine that one cache line could

“straddle” two different virtual memory pages.

2.1. In as few words as possible, list one reason why, if this was possible, it would

complicate the hardware or software for address translation. (2pts)

When we try to access a particular page, some information will be left out in the other cache
line, and we will retrieve the incorrect data.

2.2 However, cache line’s don't straddle virtual memory pages in real systems, why?

(2pts)

We have page offset.

13

Question 10. Another Phase? (8pts)

OMG another bomblab phase? Using instructions we never learned in class? 🤦

00000000005858a8 <string_cmp>: # compares two strings, returns zero if equal

#... asm omitted… (same as strcmp)

00000000005858b6 <string_cpy>: # copies string (same as strcpy)

#... asm omitted...

00000000005858c4 <phase_defused>: #prints phase_defused message

#... asm omitted...

00000000005858de <explode_bomb>: #prints explode_bomb message

#... asm omitted...

00000000005858f8 <phase_11>:

 5858f8: 48 83 ec 18 sub $0x18,%rsp

 5858fc: 48 89 fe mov %rdi,%rsi

 5858ff: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi

 585904: e8 ad ff ff ff callq 5858b6 <string_cpy>

 585909: f3 0f 10 44 24 08 movss 0x8(%rsp),%xmm0

 58590f: 0f 2e 05 12 17 09 00 ucomiss 0x91712(%rip),%xmm0

 #Addr: 0x617028

 585916: 7a 16 jp 58592e <phase_11+0x36>

 585918: 75 14 jne 58592e <phase_11+0x36>

 58591a: b8 00 00 00 00 mov $0x0,%eax

 58591f: e8 a0 ff ff ff callq 5858c4 <phase_defused>

 585924: bf 00 00 00 00 mov $0x0,%edi

 585929: e8 22 df 00 00 callq 593850 <exit>

 58592e: b8 00 00 00 00 mov $0x0,%eax

 585933: e8 a6 ff ff ff callq 5858de <explode_bomb>

 585938: 48 83 c4 18 add $0x18,%rsp

 58593c: c3 retq

000000000058593d <main>:

... asm omitted...

000000000058595a <secret_phase>:

Some helpful things:

● (gdb) print *(float*)0x617028

$3 = 1157837119180632802476425216.000000

● Ucomiss compares two floating point values, it works similarly to cmp.

● string_cmp is the same as the standard strcmp, and string_cpy is the same as strcpy,

but I’m using my own versions b/c it makes the code easier to read.

1. What string will diffuse this phase? (4pts)

2. What string will enter the secret phase? (4pts) 0000 0000 0000 0000 0000 0000 5a
59 58 00 00 00 00 00

14

