
CS33: Intro Computer Organization Name: _______________________
Fall 2021 Midterm

UID: _______________________

(Please write as legibly as possible!)

This is an open book, open notes exam, but you cannot share books/notes. Please follow the
university guidelines in reporting academic misconduct.

Note: If the architecture of the machine is not specified, assume that the question is being asked
in the context of a 64-bit little endian x86 machine, running Linux.

Please wait until everyone has their exam to begin. We will let you know when to start.

Good luck!

Points Possible

1. Multiple Choice 14

2. Baba is Struct 8

3. Notable Floats 5

4. Array Interpretation 8

5. Imaginary Stack Allocator 10

6. Tricky Switch 7

7. Floating Point Mystery 4

8. Two Birds, One Bomb 6

Total 50
+12 bonus points

Question 1. Multiple Choice (14 points)

For the following multiple choice questions, select all answers that apply. If none are correct,
leave the question blank. Put your answers in the table on the next page. (2pts each, no partial)

1. What is a difference between unsigned and signed integer representations?
a. Unsigned integers can store a wider range for the same number of bits.
b. Right-shifting an unsigned integer uses “logical” shift, while right-shifting a signed

integer uses “arithmetic” shift.
c. In a C expression that operates on two different datatypes, an unsigned datatype

will take precedence over a floating-point datatype, but a signed datatype will not.
d. It is meaningful to ask if a signed number is greater-than or equal to zero, while

the same is meaningless for unsigned numbers.

2. Suppose you use the objdump command to disassemble a function, and you see this:

0000000000400595 <func>:

400595: 53 push %rbx

What does the “53” in the above line represent?
a. The function has a length (in terms of instructions) of 53 bytes.
b. The push instruction is 53-bytes offset from the beginning of the function.
c. “53” contains an encoding of the register %rbx.
d. “53” contains an encoding of the push operation.
e. Address 53 is the location of where a callee-saved register is pushed.

3. X86_64 contains an instruction which performs a conditional move -- cmov --, which
moves one register to another based on the condition codes (aka. flags). This
instruction can sometimes be used to perform if-statement control flow. When is
performing if statements using conditional moves a better option than using ordinary
branch instructions?

a. When the body of the if statement contains function calls.
b. When the body of the if statement contains side effects.
c. When the body of the if statement contains many instructions.

4. X86_64 contains an instruction which performs an indirect jump -- jmp* --, which jumps
to a location specified in a memory table. This instruction can sometimes be used to
perform switch-case-statement control flow. When is performing switch statements using
indirect jumps a better option than using ordinary branch instructions?

a. When there are more fall-through cases than non-fall-through cases.
b. When there are few instructions in the case statements.
c. When there are many instructions in the case statements.
d. When the first case value is zero.
e. When the range of case values is contiguous.

5. Suppose that the next C language standard contains an 11-bit unsigned integer
datatype. What would be a valid reason (or reasons) to reject this proposal?

a. There are already larger and smaller datatypes (e.g. 8-bit and 16-bit), so it's not
useful.

b. Modern ISA use byte-addressable memory, so accessing arrays of contiguous
11-bit integers would require extra instructions to extract the number.

c. For a two’s complement number to be well-defined, its size must be a multiple
of 2.

d. Having an 11-bit number would make it impossible to satisfy the datatype casting
rules in the C standard.

6. For what C datatypes is the concept of “endianness” irrelevant?
a. char
b. unsigned char
c. string (i.e. array of char)
d. int
e. float

7. What kind of control flow is contained in this assembly function? (see figure below)
a. Loop (e.g. while/for)
b. Conditional Branch (if/else)
c. Indirect Branch

(switch/case)

Answer Table (list any correct answers)

1

2

3

4

5

6

7

Question 2. Baba is Struct (8 Pts)

Consider the following structure, union, and array definitions:

typedef struct {

int baba;

short flag[5];

float* keke;

char key;

} noun;

typedef union {

int hot;

short shut[5];

float* stop;

char open;

} property;

noun you[5];

property me[5];

// Note: Typedef here just means

that were are defining a struct

type that we can use later in the

array definition.

// Create an “arrays of structs”

and an “array of unions”

Test is

1. If &you == 0 (i.e. if the address of you[0] is zero), at what address is you[1]?

2. If &me == 0 (i.e. if the address of me[0] is zero), at what address is me[1]?

3. If we access “property.shut[1]”, that will also access half of the bits in “property.hot”. Will
that be accessing the least significant bits of “hot” or the most significant?

4. Consider all the primitive data types within the arrays “you” and “me”. Which of these
are guaranteed to have their addresses aligned to a multiple of their size?

win

Question 3. Notable Floats (5 Pts)

The following table shows a number of “interesting” values for floating-point numbers, along with
their encoding into sign, exp, and frac fields.

Pattern sign exp frac

A 0 00..00 00..00

B 0 00..00 00..01

C 0 00..01 11..11

D 0 00..01 00..00

E 0 01..11 00..00

F 0 11..10 11..10

G 0 11..11 00..00

H 0 11..11 11..11

Match the following definitions to the interesting numbers above (write “A”, “B”, etc. in the box)

0. Zero

1. One

2. Smallest Non-zero
Denorm

3. Smallest Possible
Normalized Number

4. Not a Number (NaN)

Note: These patterns don’t specify the number of bits, but that won’t matter for answering the
question. Assume the same strategy for representation of denormalized numbers, NaNs and
infinities as other IEEE 754 standard numbers.

Question 4. Array Interpretation (8 pts)

1. For the following datatype definitions, answer the following questions: (6pts)

● sizeof(array): What is the size of “array” in terms of number of bytes?
For this problem, we are only talking about the memory allocated for the variable “array”,
and not any other supporting data structures.

● How many dereferences?: List the number of memory dereferences that it would take
to access an integer for that datatype. In other words, how many times do you have to
access memory total (how many loads), to eventually access a single integer. Include
the load of the integer itself.

Array Declaration sizeof(array) How many dereferences?

int* array 8 1

1 int array[3][2]

2 int (*array)[5]

3 int *array[5]

2. What is the array declaration for the following array, represented visually below? (2pts)

4 Datatype for array:

Question 5. Imaginary Stack Allocator (10pts)
Part 1: Suppose we have two functions, FuncP and FuncQ. FuncP calls FuncQ, and the stack
frames of both functions are depicted below.

All functions require a “prologue” and “epilogue” to manage the stack. The prologue allocates
stack space, and usually appears at the beginning of the function. The epilogue deallocates
stack space, and usually appears at the end of the function.

Based on the stack frame, write the prologue and epilogue for FuncQ. Don’t use more
instructions than you need to.

Stack Frames….

Prologue for FuncQ: Arg. 8 F
u
n
c
P

Arg. 7

Return
Address

Old r12
F
u
n
c
Q

Old rbp

Epilogue for FuncQ: Unused
(16 bytes)

rsp->

Space for C
array
int array[4]

Part 2: FuncR is another function, and its assembly is shown below. Fill in the prologue and
epilogue for this function too!

Prologue for FuncR: ___missing_FuncR_prologue___

movq %rdi, %rbx

movq $33, 8(%rsp)

movl $1234, %esi

leaq 8(%rsp), %rdi

call FuncS

addq %rbx, %rax

___missing_FuncR_epilogue___

Epilogue for FuncR:

Question 6. Tricky Switch (7 pts)

Source Code Compiled Assembly

int func(int x, int y, int r) {

switch (x) {

case 0: ____Blank 0____

case 1: ____Blank 1____

case 2: ____Blank 2____

case 3: ____Blank 3____

case 4: ____Blank 4____

case 5: ____Blank 5____

}

return ____Blank 6____;

}

func(int, int, int):

cmpl $5, %edi

ja .L9

movl %edi, %edi

jmp *.L4(,%rdi,8)

.L4: (hint, this is the

.quad .L8 jump table!)

.quad .L7

.quad .L6

.quad .L5

.quad .L5

.quad .L3

.L7:

addl $6, %edx

.L6:

leal (%rdx,%rdx,4), %eax

ret

.L5:

leal (%rdx,%rsi,2), %eax

ret

.L3:

movl %edx, %eax

xorl %esi, %eax

ret

.L8:

movl $-4, %eax

Ret

.L9:

movl %edx, %eax

ret

Reverse engineer the assembly code on the previous page to figure out what each case of the
switch-case statement is doing. Don’t forget about “break” statements!

Blank 0

Blank 1

Blank 2

Blank 3

Blank 4

Blank 5

Blank 6

Question 7. Floating Point Mystery (4pts)

A long time ago, we used to put floating-point questions on the datalab. I found a solution to
one of these problems lying around, but can’t figure out what it’s doing anymore:

unsigned mystery_function(unsigned uf) {

unsigned sign = uf>>31;

unsigned exp = uf>>23 & 0xFF;

unsigned frac = uf & 0x7FFFFF;

if (exp == 0) {

frac = 2*frac;

if (frac > 0x7FFFFF) {

frac = frac & 0x7FFFFF;

exp = 1;

}

} else if (exp < 0xFF) {

exp++;

if (exp == 0xFF) {

frac = 0;

}

}

return (sign << 31) | (exp << 23) | frac;

}

1. In what cases will this function return the same thing as the input argument? (1pt)

2. What does the above function do? (3pts)

Question 8. Two Birds, One Bomb (6pts)

Dump of assembler code for function phase_5:

0x00005555555551c8 <+0>: sub $0x8,%rsp

0x00005555555551cc <+4>: mov $0xa,%edx

0x00005555555551d1 <+9>: mov $0x0,%esi

0x00005555555551d6 <+14>: callq 0x555555555070 <strtol@plt>

0x00005555555551db <+19>: mov %rax,%rsi

0x00005555555551de <+22>: lea 0x2e5b(%rip),%rdi # 0x555555558040 <nodes>

0x00005555555551e5 <+29>: callq 0x55555555519e <recurse>

0x00005555555551ea <+34>: cmp $0x21,%eax

0x00005555555551ed <+37>: je 0x5555555551fe <phase_5+54>

0x00005555555551ef <+39>: mov $0x0,%eax

0x00005555555551f4 <+44>: callq 0x55555555517e <explode_bomb>

0x00005555555551f9 <+49>: add $0x8,%rsp

0x00005555555551fd <+53>: retq

0x00005555555551fe <+54>: mov $0x0,%eax

0x0000555555555203 <+59>: callq 0x555555555169 <phase_defused>

0x0000555555555208 <+64>: jmp 0x5555555551f9 <phase_5+49>

Dump of assembler code for function recurse:

0x000055555555519e <+0>: test %rdi,%rdi

0x00005555555551a1 <+3>: je 0x5555555551c2 <recurse+36>

0x00005555555551a3 <+5>: push %rbx

0x00005555555551a4 <+6>: mov 0x10(%rdi),%ebx

0x00005555555551a7 <+9>: cmp %esi,%ebx

0x00005555555551a9 <+11>: jge 0x5555555551b8 <recurse+26>

0x00005555555551ab <+13>: mov 0x8(%rdi),%rdi

0x00005555555551af <+17>: callq 0x55555555519e <recurse>

0x00005555555551b4 <+22>: add %ebx,%eax

0x00005555555551b6 <+24>: pop %rbx

0x00005555555551b7 <+25>: retq

0x00005555555551b8 <+26>: mov (%rdi),%rdi

0x00005555555551bb <+29>: callq 0x55555555519e <recurse>

0x00005555555551c0 <+34>: jmp 0x5555555551b4 <recurse+22>

0x00005555555551c2 <+36>: mov $0x0,%eax

0x00005555555551c7 <+41>: retq

(gdb) x/21gx &nodes

0x555555558040 <nodes>: 0x0000555555558058 0x0000555555558070 0x000000000000000a

0x555555558058 <nodes+24>: 0x0000555555558088 0x00005555555580a0 0x0000000000000005

0x555555558070 <nodes+48>: 0x00005555555580b8 0x00005555555580d0 0x000000000000000c

0x555555558088 <nodes+72>: 0x0000000000000000 0x0000000000000000 0x0000000000000001

0x5555555580a0 <nodes+96>: 0x0000000000000000 0x0000000000000000 0x0000000000000007

0x5555555580b8 <nodes+120>: 0x0000000000000000 0x0000000000000000 0x000000000000000b

0x5555555580d0:<nodes+144>: 0x0000000000000000 0x0000000000000000 0x0000000000000011

So, it turns out that I need a new phase_5 for the bomb lab, because the old phase_5 is waaaay
too easy to cheat on … therefore, I made this phase_5 for next year, with a similar kind of flavor.

Please help me make sure this new phase_5 has no errors by solving it for me. I’ve printed out
a couple functions and some memory values. Next year’s class will surely thank you. ;)

Note that “strtol” just converts an ascii string (specified by a char* input) into an integer.

1. What datastructure is this problem concerned with? Please be specific. (1 pt)

2. What string passed to “phase_5(char* input)” will defuse the phase? (5 pts)

