Problem 1. (12 points):

Consider the source code below, where M and N are constants declared with #define.

int matl[M] [1‘4];
int mat2[N][M];
T
int sum_element (int i, int 3Jj)
{
return matl[i][j] + mat2[i][jl;

A. Suppose the above code generates the following assembly code:

sum_element:
pushl %ebp

movl %esp, $ebp N

movl 8 (%ebp), %eax 1

movl 12 (%ebp),%ecx 2’

sall $2,%ecx % 2p. ;

leal 0(,%eax, 8),%edx fx U

subl %eax, %edx 7

leal (%eax,%eax,4),%eax 4(—(— '{/ 2T A
movl mat2 (%ecx, %eax,4), %eax %ﬂ “’/'l‘ 4 ;L)

addl matl (%ecx, $edx, 4), %eax

movl %ebp, $esp 4 x7 ¥ A+ 4{,2‘

popl %ebp
ret

What are the values of M and N?
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Problem 2. (15 points):
Consider the following C declaration, assuming a 32 bit machine (1 byte size for char, 4 byte size for int, 3
bytes for double):

struct Node{
char c;
double d;
struct Nodex nj;
int iy
struct Nodex 1;
struct Nodex r;
bi

typedef struct Nodex pNode;

/* NodeTree is an array of N pointers to Node structs x/
pNode NodeTree[N];

A. Using the template below (allowing a maximum of 32 bytes), indicate the allocation of data for a Node
struct. Mark off and label the areas for each individual element (there are 6 of them) using the letter of the
variable to indicate the byte positions spanned by the element (for example, for element “int i you would
have iiii across four spaces). Indicate with an “x” the parts that are allocated to the struct, but not used for
storing meaningful data (i.e. space within the struct allocated to satisfy alignment).

Assume the Linux alignment rules discussed in class (1 byte alignment for char, 4 byte alignment for int,
double, and pointers). Clearly indicate the right hand boundary of the data structure with a vertical
line.
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B. For each of the four C references below, please indicate which assembly code section (labeled A — F)

places the value of that C reference into register $eax. If no match is found, please write “NONE” next to

the C reference.

The initial register-to-variable mapping for each assembly code section is:

%eax = starting address of the NodeTree array
%edx = 1
C References: //"j

/
T . NodeTree[il]l-> 1 RQE;? e

TT 2 _é;ﬁ;_ NodeTree[i]-> 1 -—> 1 —> ciﬁlﬁﬁq QL
Tt E NodeTree[i]-> n —> n —> 1
TN £ ) NodeTree[i]l-> r —> 1 —> 1

Linux/IA32 Assembly:

)
\ ¢
1

//A{’ sall $2, %edx s iff' 7 sall $2,%edx
leal (%eax,%edx), %$eax 3 leal (%eax, %edx), %eax
movl 16 (%eax), %eax ) movl (%eax), %eax
\ CovI & ) 9 movl 24 (%eax), %eax

N \

movl 20 (%eax), %eax
movl 20 (%eax), %eax

Ci sall $2,%edx D: sall $2,%edx
leal (%eax, %edx), %eax leal (%eax, %edx), %eax
movl 20 (%eax), %eax movl (%eax), %eax
movl 20 (%eax), %eax movl 16 (%eax), %eax
mofgbl (%eax) , %eax =

E: salt’$2, %edx F: sall $2, %edx
leal (%eax, %edx), %$eax leal (%eax,%$edx), %ecax
movl (%eax), %eax movl (%eax),%eax
movl 16 (%eax), %eax movl 12 (%eax), %eax
movl 16 (%eax),%eax movl 12 (%eax), %eax
movl 20 (%eax), %eax movl 16 (%eax), %$eax
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Problem 3. (12 points):

Assume the following sizes for this problem:
double: 8 bytes

int/unsigned: 4 bytes

short: 2 bytes

char: 1 byte

Consider the following C declaration:

union Uni ({
char c[20];
double d[27];
short s[3];
unsigned u;
Int g

} unii;

A. How much memory space in bytes would need to be allocated for uni1?
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B. Assume)unil .d[& is 1{&0 /z[gi to-5.5, and tﬁz the value of unil.s[0] is updated from OxCOBO}to 0x40B0.
What is the value of unil.d[0] after the update, assuming a big-endian representation?
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C. Which of the following functions (assertl, assert2, assert3) always returns true (i.e. never returns 0)?
Write the name of the function that satisfies this condition in the blank below, or write “none” if you believe
that none of these functions always returns true.

short assertl (Uni uni, int num) {
if (uni.i == num) {

return ((int)fun;,pQ == num;

short assert2(Uni uni, short sh) {
if (uni.s[0] == sh) {
return ((short) uni.i) == sh;

short assert3 (Uni uni, double dbl) {
if (uni.d[0] == dbl) {
return ((double) uni.i) == dbl;
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Problem 4. (13 points):

Consider the following C code involving function pointers:

#include <stdio.h>

int (xfp_a) (int);
ink {(*fp b) (int);

int rand(void);
2

int execute_funcs(int arg) {

int tempgﬁﬂ}Q/. a .

temp =-fpLatarg) ‘§A\~‘\ = A\A

[ return fp_b (temp)l; L \
TR A, ol ~+ o —:%{ T
intefuncl (int i) 4 \)\X/L)'\T\ i

return i + 1; \/(‘ Fumanay Lo n-D 1
: \ﬂ‘* J)x |
! N
- kxa )t ]
int fune2(int i) { Q% s = v/ |
return i » 2j
} e ~o Y. v VYV ~€£ wy B /

void create_func_pointers (int test) {
if (test >= 0 )
fp_a = funcl;
else
fp a

func2;

fp_b = funcl;

void main () {
/int a, b;
a = rand();
b = 2;
create_func_pointers(a);
execute_funcs (b);
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A. Explain how memory aliasing can occur in execute_funcs().

Sine {p-t ond %p_bmmbm he Colont ical, phovefor,

\
J Wemmiy alsaﬁg (Omeeteuy

B. What value would be returned from execute_funcs if no memory aliasing has occurred?
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C. What value would be returned from execute_funcs if memory aliasing has occurred?
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Consider the following re-implementation of exectite_funcs:

)
ety he | 24
int execute_funcs (int arg) { U e q\l“(l?z t }

int temp;
temp = funcl (arg);
return func2(temp);

}

D. Would this new implementation of execute_funcs allow a greater degree of compiler optimization, a lesser
degree of compiler optimization, or would this update have no effect on the compiler’s ability to optimize

the code?
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Performance Optimization

Problem 5. (14 points): ([

The following problem concerns optimizing a procedure for maximum performance on an Intel Pentium
TIIL. The following are the performance characteristics of the functional units for this machine across various

operations:
Operation Latency | Issue Time
Shifts 1 1
Integer Add 1 1
Integer Multiply 4 1
“Integer Divide 36 36
Floating Point Add 3 1
Floating Point Multiply 5 2
Floating Point Divide 38 38
Load or Store (Cache Hit) 1 1

You’ve just joined a programming team that is trying to develop the world’s fastest factorial routine. Starting
with recursive factorial, they’ve converted the code to use iteration:

int fact(int n)

{
NEigi
int result = 1;
for (G =y 1> 07 d==)
result = result = 1i;
)

return result;

}

2 By doing so, they have reduced the number of cycles per element (CPE) for the function from around 63 to
__~ around 4 (really!). Still, they would like to do better.

A. Explain why the iterative version of fact would perform so much better than a recursive version.
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One of the programmers heard about loop unrolling. He generated the following code:

Tng Eact 2 (A6t 1)

{

it 5 | i{ L
int result = 1;
for (i i; i-> 0; 1-=2) {

result = (result = i) * (i-1);

return result;

}
Unfortunately, the team has discovered that this code returns 0 for some values of argument n.

B. For what values of n will fact_u2 and fact return different values?

jp)

s ; 10 ¢t ﬁ -
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C. Show how to fix fact_u2 so that its behavior is identical to fact. Your update must only change a

single character of the original code.

foedl =n L7V 1-=2)
/A'\Q clf\ovuj/ﬁ

D. Suppose it could be assumed that the value of the parameter n would always be greater than ji , and that the
function would be extremely heavily used to the point where even saving a couple of loop iterations and/or
cycles of latency would help overall performance. A new version of the “fact” function below, fact_ngl (int
n), attempts to take advantage of this knowledge by taking the Wthe
blanks in the return statement to incorporate the same effect as the n=2 loop iteration had in the original
function, incorporating a reduction in strength optimization. Each blank should contain either an operator,
a variable name, or a constant value.

—~

5 L
int fact ngl{int n) { L XA
int i; \ =
int result = 1; T \ -
for (din = npi > 2; 1-==) {
result = result =* i;

return result X 2\ s

} | @\
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The following problem concerns optimizing a procedure for maximum performance on an Intel Pentium
M. Using the same performance characteristics for operations as in Problem 5, consider the following two

procedures:
Loop 1 . Loop 2
int loopli(int ®a, int x, dnt n) int loop2 (int =*a, int %, int n)
{ {
int y = X*X; St yis XRX;
int i SN ds
for: (1 —k0; 4 < my ath) FoE e = 003 < npidtbT)
x =y * al[il; = % % afil;

return x*xy; return xxyj;

L }

When compiled with GCC, we obtain the following assembly code for the inner loop:

Loop 1 Loop 2
L2 S ABZLTD
movl %ecx,%ea\(x imull (%esi,%edx,4),%eax
imull (%esi, %edx,4),%eax incl %edx
incl %edx {/ cmpl $%$ebx, $edx
cmpl %ebx, $edx G a2
1 .2l |
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Problem 6. (9 points): /
Running on a Pentium ITI Xeon server, we find that Loop 1 requires 3.0 clock cycles per iteration, while
Loop 2 requires 4.0.

~— A. Explain how it is that Loop 1 is faster than Loop 2, even though it has one more instruction. (Hint:

consider how the latency of the multiplication operation might affect one of the loops more than

et another, given that pipelined processors have multiple instructions in execution at once whenever
possible and that all operands must be known for an instruction to enter the pipeline).

sing tg Tt multipliatiy latmen i 4 ond ime time s 1,
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B. By using the compiler flag -funroll-loops, we can compile the code to use 4-way loop unrolling.
This speeds up Loop 1. Explain why.
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z} C. Even with loop unrolling, we find the performance of Loop 2 remains the same. Explain why.

A m L"Lp 2 L J.:",'t"-Ci:",&'Y"j/Q 6" SAQ i X= Xx QCU

Ao depd on previens X, suothat the  preesor hes
Jo Enow the  prusn X pefer elete a row

f 3 > - 1Y, > ~ )
l,{n v\!_'?ff{a {M‘Pzé% < ﬁt VW €vany WA ; W i.yg’_/%.r""'j f [/\43 '
J

~

not an, % SF::QJ "’j’ [ “P 2

Page 12 of 16




Problem 7. (12 points):

The following problem concerns basic cache lookups.

e The memory is byte addressable.
e Memory accesses are to 1-byte words (not 4-byte words).

e Physical addresses are 12 bits wide.

e The cache is 4-way set associative, witl@yte block size and 32 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

4-way Set Associative Cache

Index|| Tag Valid|Byte O Byte 1] Tag Valid[Byte O Byte 1 | Tag Valid[Byte O Byte 1] Tag Valid| Byte 0 Byte 1
29 =10 34 29 87 39 AE || 7D 68 E2 8 1 64 38
F3 1 0D 8F 3D 0C 3A 4A A4 DB || D9 1 A5 3C
A7 1 E2 04 AB D2 04 E3 3C A4 01 0 EE 05
3B 0 | AC 1F{FO—~— BRSSO O 6695 |37 1 | 49 F3
60 35 2B 19 57 49 8D OE 00 0 70 AB

1 B4 17 CE 67 DB 8A DE AA 18 1 2C D3
1E=2 10 3F A4 01 3A C1 FO 20 13 e 1 DF 05

0 00 FF AF B1 5F 99 AC 96 3 1 22 79

1

\)c\m-h-lkww'-o
(o]
S
e

O OO -O
i

OO =D

Part I

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

CO The block offset within the cache line

CI  The cache index 3
CT The cache tag ‘

i e 9 R g 6 s 4 .3 2 1 0

CUCTETICTICT T CLICL | (O

@)
== |
—
D,
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Part I1

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex.

Indicate whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

% Ti 4 57

et

A. Physical address format (one bit per box)

Physical address: 3B6

(€ (g3 (4

|

1\

O

11 10 9 8 7 6 5 4 3 2 1 0
FACETRERIEIrEIERE I FEE
e
2’

B. Physical memory reference

Parameter Value |
Cache Offset (CO) 0x O
Cache Index (CI) Ox ||
Cache Tag (CT) 0x37
Cache Hit? (Y/N) e
Cache Byte returned | 0x 44

=)

3
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Problem 8. (12 points): | @& ig
A bitmap image is composed of pixels. Each pixel in the image is represented as four values: three for the
primary colors(red, green and blue - RGB) and one for the transparcncy mformatlon defined as an alpha

channel. \\) g SHEb

In this problem, you will compare the performance of direct mapped and 4-way associative caches for a
square bitmap image initialization. Both caches have a size of 128 bytes. The direct mapped cache has
8-byte blocks while the 4-way associative cache has 4-byte blocks.

You are given the following definitions

typedef struct{ D [ )& ;’\/

unsigned char r; f
unsigned char g;

SR unsigned char b; /% 5,,\,,@_"&
unsigned char a;

| >
{ }pixel t; é 3 L :
{ ; Am)

pixel_t pixel[16][16]; ] IM/CP
register int i, 3J;

Also assume that f§
= g[‘?\ e sizeof (unsigned char) =1

pixel begins at memory address 0

,///
«/ 4
[ ]

Both caches are initially empty 0

e The array is stored in row-major order

__Lh, ol RKZ

e Variables i,j are stored in registers and any access to these variables does not cause a cache miss

A. What fraction of the writes in the following code will result in a miss in m@%d | cache?

for: (1 = 03 1 < 16y 4 ++){
for. (] = 05 3 < 165 o ) {
pixelfi] [§l.x = 0;

| pixel[il[§]1.g = 0; —
pixel[i]l[i].b = 0; )

! pixel[il[j].a = 0; :/";,,,/f'

| } \%‘i

| } < \

z _
| &2, | Miss rate for writes to pixel: l 2 = g\ %

B. Using code in part A, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to pixel: % ’§ x %
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C. What fraction of the writes in the following code will result in a miss in the direct mapped cache?

Eor (i =elpa it 167 4. k)
For (=077 < 167 3 EH)i

= 0; » ,-H-
- 0; 1

piEEljl E] -
pixel[31[i]l.g
pixel[j][i].b = 0}
pixel[j][i]l.a = O;
}
}
Miss rate for writes to pixel: 2/5 %

D. Using code in part C, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to pixel: Z: § i %
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