
Name

CS 32

Winter 2012

Midterm 1

February 1, 2012

Problem # Possible
Points

Actual
Points

1 24 [<:0
2 11 01

TOTAL 35 1-~

STUDENT 10 #: ..L ~L ­ ~ ~~ ­ ~ _\,-,_ U

INSTRUCTOR: [] Nachenberg [vi'Smaliberg

SIGNATURE: ~
/

OPEN BOOK, OPEN NOTES

NO ELECTRONIC DEVICES

ENJOY!

1. [24 points in all]

Recall this from the Map class you wrote; this is a Map from strings to ints:

typedef string KeyType;
typedef int ValueType;

class Map
{

public:
Map() ;
bool insert(const KeyType& key, const ValueType& value);
bool update(const KeyType& key, const ValueType& value);
bool insertOrUpdate(const KeyType& key,

const ValueType& value) ;
bool erase(const KeyType& key);
bool contains(const KeyType& key) const;
bool get(const KeyType& key, ValueType& value) const;
II other functions not shown

) ;

Consider this excerpt from a class representing a photo. For this problem, all we
need to know is that every photo has a string indicating the subject of the photo and
and int indicating the year the photo was taken:

class Photo
{

public:
Photo(string subj, int yr);
string subject() const { return ill_subject;
int year() const { return ill_year; }
II other functions not shown

private:
string ill_subject;
int ill_year;

} ;

Assume that we have this global variable, accessible from anywhere in the program:

Map SCill; II short for subjectCountMap

This map is supposed to keep a count of the subject strings for every Photo object
currently in existence in the program. If the first four Photo objects created were

Photo pl ("Royce Hall" , 2008);
\ Photo p2 ("bruin statue" , 2 012) ;
{' Photo p3 ("Royce Hall" , 2008) ;

-(, Photo p4 ("Royce Hall" , 2 011) ;

0

then scm would map ("bruin statue" to 1 and "Royce Hall II to 3. This,
then, could be part of the implementation of the Photo constructor shown above:

Photo: : Photo (string subj, int yr)

int count = OJ
scm.get(m_subject, count); II count remains 0 if

II m_subject is not in map
scm. insertOrUpdate (m_subject, count+1);

If we let the compiler generate the destructor, copy constructor, and assignment
operator for the Photo class, the contents of scm would not always be accurate. (For
example, consider this function:

void h ()

{

Photo p("inverted fountain", 1998);
 \~

} ,~~ ~"(\ \-c

l \\r\

If just before we called this function, scm contained no occurrences of " inverted S' c)('{\

fountain", then after returning from the function, scm would incorrectly contain
one occurrence of that string; that's incorrect, because after returning from the
function there are no existing Photo objects with that subject string, since the object p
went away.) Therefore, you must declare and implement the destructor, copy
constructor, and assignment operator.

In parts a, b, and c below, you may implement additional helper functions if you like.
Write any helper function implementations in whichever of parts a, b, or c first uses
it; you don't have to repeat its implementation if a later part also calls it. The scm
map must never contain a string that maps to 0; if no Photo exists with a particular
subject string, then that subject string should not be in the map at all.

1/. \c.~. S~ ~~\.\~_)J\ ,''I' d.o~u.~ ~
a. [5 points] (! ' {\~

v,A (}> \'t\}-o c.)...-V ~'I'. di
{/

Complete the implementation of the destructor for the Photo class: C~ ~JtI.... U
v 0 wYCJllQC

b. [5 points]

Implement the copy constructor for the Photo class:

-----­

c. [5 points]

d. [5 points]

Consider the following program. Correct answers to parts a, b, and c will result in the
assertions being true. Assuming those correct answers, the program produces four
lines of output.

Map scm;

int howmany(const Map& m, string s)
(

int ct = 0;

m.get(s, ct); II ct remains 0 if s is not a key in m

return ct;

void f(Photo p)
(

cout « "Line 2: "	 «howmany(scm, "David") «

« howmany(scm, "Carey") « endl;

void 9 ()	 >oW'
{	

p 1~- \)M£\Photo pl("David~, 2012);
, _ 1J()v'\/>~

Photo p2 ("Carey", 1995); r L - " ./'
Photo p3 (p2) ; r""3 -:;... ('et~if (howmariy(scm, "David") 1)
{

Photo p4("David", 2008); ~.-; ~ 0.- \A', c\

p2 = p4;

~Q)\C ,fffiMap checkScI}1;

checkScm.insert(pl.subject()) ; t)CAN\ d -~) ',­
checkScm.insert(p2.subject()) ;

checkScm.insert(p3.subject()) ; ~\

checkScm.insert(p4.subject()) ; ',CC\¥£:t f,~

assert (howmany (scm, "David") howmany(checkB:m, "David"));

I (assert (howmany'(scm, "Carey") == howmany(checkScm, "Carey"));
}

cout « "Line 1: " « howmany (scm, "David") « " ~- l" -« howmany(scm, "Carey") « endl;
~

f (pi) ; ~- \\
cout « "Line 3: " « howmany (scm, "David") « '2- \

« howmany(scm, "Carey") « endl;

int main ()
{

g() ;

cout « "Line 4: "	 « howmany(scm, "David") « o - ,O-=­
« howmany (scm, "Carey") « endl;

On the next page, write the four lines of output this program produces.

Complete the four lines of output the program on the previous page produces:

Line 1 : \~
Line 2: rz- \ -"-:>
Line 3 :

~ \
Line 4:

(1) 0

e. [4 points]

Here is a declaration for a Magazine class:

class Magazine

{

public:
Magazine(string t, string i, int pg, int yr, string subj);
II other functions not shown

private:

string rn_title;

string rn_issue;

Photo rn_coverPhoto;

int rn-pages;

} ;

Every magazine has a title, an issue, a cover photo, and a number of pages. We can
construct magazines like this:

Magazine rn1("Nerd World", "Feb 2012", 128, 1995, "Carey");
Magazine rn2("The Chic Geek" , "May 2011", 64, 2011, "David");

The constructor takes the magazine's title, its issue, its number of pages, the year its
\. ' '.

cCr p_~~_~~~_~~~n,and t~~~~~_~~_~~~:~J ~----.J

Write the implementation of the Magazine constructor below:

string subj)

(
I

r

11----------------

2. [11 points]

Here is an excerpt from the definition of a doubly-linked list class. A LinkedList

object represents a doubly-linked list of integers. The implementation uses no

dummy node. The first node in the list has NULL as its prev data member, and the

last node has NULL as its next data member.

class LinkedList
(

public:

void eraseSecondToLast();

private:

struct Node

int value;

Node* next;

Node* prev;

} ;

Node* head; II points to first Node in the list
} ;

The eraseSecondToLast function properly deletes on~~~Bl~link~.~Ui~Ul,1aLj

has at least three nodes; it removes the one ju~before the last node in the list. You
may assume that it will be called only for lists with at least three nodes. (In other D
words, the code you produce doesn't have to work for a list with two or fewer nodes.) .
The code must take the following form, with no additional lines and the blanks -7G
indicating code from the listed choices. Your options are limited to those shown. ~D

~

void LinkedList: :eraseSecondToLast() A curr

{ \ \ -t'e BNode* curr = f\{)(!(1 (' .l- curr->next
1 n' L C curr->next->next->next

while (0lNi~;~ !:lJ'v (... /...) L D
--'~=='--'--------'_l-=.:= - curr->next - >next - >prev (Ll<Y

23. E
~~=~_____ ~-1~ curr->prev

4 5 F curr->prev->next
Node* temp = (,LV'V " G curr->prev->prev

, >adV ~\-
~.) ~'rV'" ,.'-;;- --::, CLyy'"" ; H curr->prev->prev->next

. 7 8IH,. -"> ~ I head
(),w-->rz~ = V-XV"--'>t";, P

G- 9 10 or ~ J head->next

delete ~-{ 'Q'('Jv K NULL

11 t- L temp

~ temp->next->next

Write1he letters corres onding to the filled-in code he ; we'll look at these, not the code.
1 2 3 4 5 6 7 8 9 10
~----- ------r; ------\i.------A;------\'7)-- -­ -------- - ---\1--------i\ -­ -- --£-- -­

.....

