Variable Identifiers/Types
Identifiers can only begin with an alpha/underscore and
contain both and numbers
double x=5; double x(5) doublex{5}
static_case<type> (variable) = does not change variable
Built-in types are garbage value by default
Boolean: true(1) false(0)
(Boolean expression) ? nl: n2;
If true, return nl If false, return n2
If (a[i] = a[i+1]) -> returns a[i] after execution
Precision
cout.setf(ios::fixed);
cout.precision(2);
Arithmetic Operators
‘I=" not equal to, ‘==" equal to
&&-and || -or ‘%’- modulus
If both are double, result is double
If both are int, result is int
If one is double, result is double
1/3>0
14%5=4 14/5=2
x++ = return x then increment
++x = increment than return x
While Loop
while (Boolean expression) {
body;
increment;

}
If Statement
if (Boolean expression) {

body;
else
body;
}
Do While //executes body at least once
do
{
body;
} while (Boolean);
For Loop
for(initialization; expression; increment;) {
body;
}

Break statement: breaks out of nearest enclosing loop
Continue abandons current iteration and goes to next one
Switch Statement
switch (variable) {
case type:
break;
case typel:
break;
default:
break;

Variables in switch statements can only be int, double or char
If you do not use a break between cases, it will run until it
finds a break

Scope

Int sum;

for (intk=0; k < 2; k++)
sum +=1;

You cannot access k after you leave the for loop
Variables declared outside a function do not exist inside
function, and vice versa
Look at scope block-by-block
Functions
return type identifier(parameters); = prototype
return type identifier(parameter) { = definition
body;

}
Can have zero parameters = void () returns no value

* return; terminates without returning a value
A parameter with const cannot be modified within a function
When calling a function, you only pass in variables, not types
Strings
Input: getline(cin, answer);
Use cin.ignore(1000, ‘\n’); when inputting a number then a
string
Strings are empty by default
Int s = “COMP”;
s+ “ILE” = “COMPILE” s.length()=2; s[2]=‘M’
s.substr(0, 3) = “COM” s.substr(1) = “OMP”
Integer-Character conversion
‘0’ + integer, will give you desired numerical character
Reversing a string

for (inti=0;i<s.length()/2; i++){

char temp = s[i];

s[i] = s[s.length() - 1 - i];

s[s.length() - 1 - i] = temp;

}

Comparison: AB<AC AB<yz
<CCTYPE> Functions
isdigit, isupper, toupper, tolower, isalpha = only take char
Arrays
Valid declarations: <type><name>[size];
int arr[10]; intarr[] ={1,2};
const int MAXSIZE = 2; string sSIMAX_SIZE];

* Passed by reference sort-of (arrays are pointers)

* Size of the array should be passed to the function, call

to function only passes in array name

* Size MUST be specified if not initialized

* Inta[3]={1,2,3,4,5} //ERROR > int a[3] = {1,2} // OK
Multidimensional arrays specific size of second dimension
You can make arrays const so you don’t change the elements
String arrays are initialized to empty string
C Strings
A sequence of zero or more characters
char a[] = “Hello” chara[] ={'H, ‘e, ‘I, I, ‘o', \0'};
cout<<a+1; > “ello” cout<<a+3; > “lo”

AC < ABE

Always remember null byte, especially in size and functions
char[5] = “Hi” == char[5] = {"H’, V", \0’, \0’, \0’}
Only prints c string up to the null byte
Functions
strlen(s) strcpy(destination, source) SIZE CHECK adds ‘\0
strcat(append to, append) SIZE CHECK
strcmp(first, second)
* |f first > second return (>0)
* |f first == second return (0)
* |f first < second return (<0)
char s[10]; - can initialize as empty string
s = “abcdefg”; //ERROR use strcpy
s[1] =‘t’; // OK
char s[3][3] = {“Hi”,“Y0”,“Be”}// s[rows][columns]
s[2]= “Be” s[2][0] = ‘B’ s[1][1] = ‘o’
Converting C string into C++ string
char cs[10] = "Hello";
string cpps;
Cpps = cs;
Converting C++ string into C string
string cpps = "Hello";
strcpy(cs, cpps.c_str());
Pointers
Pointers store the addresses of variables in memory
double* p = &x; “pointer to a double”
*p = 5.0 = dereferencing the pointer
* Arrays are pointers that point to first element
¢ Array + 1 will point to second element
cout << arr will print the same as cout << &a[0]
&da[l] =dp++=dp+1
*(array + 1) == a[1] &ali] = &alj] = i-j
int Find(const string a[]) == int Find(const string* a)
Another way of passing by reference
If int = k, double* p = &k //ERROR not same type
double* g; *q=5; //ERROR we don’t know what q points to
&dal0 + 1] == &da[1] ==da + 1 == da++ &ali] —j == &ali-j]
double arr[] ={1,2,3,4}; double* p = arr; p =&al[0]
¢ If afunction parameter is (int* p) you can pass in
(&b);
* Deleting a NULL ptr is undefined behavior, deleting a
nullptr is well-defined behavior
* After deleting an object a pointer points to, you do
not have to set it to nullptr if the pointer is a local
variable
const ptr = const ptr const ptr = ptr ptr = const ptr //ERROR
* You can do constptr++, but you cannot modify what
pointer points to
Pointers in a for loop
char chaArray[] = "12345";
for (int k = 0; *(chaArray + k) !="\0'; k++)
cout << chaArray[k] <<endl; //12345
for (char* cP = chaArray; *cP !="\0'; cP++)
cout << "¥*cP="<<*cP<<endl;//12345
for (char* cP = chaArray; cP < chaArray + 5; cP++)
cout << "cP =" << cP << endl;

//12345 //2345 //345 //45 //5
Dynamic Allocation
Remember when you could not create an array w/o knowing
size?
Int len = 100;
double *arr = new double[len]; = array of double, arr points
to first element
The place dedicated for dynamic memory is called heap
Memory leak: when we lose pointers to objects and then
have no way of accessing the object, so delete unused vars

S

int *p = new int;
delete p;
For each new statement, there should be a delete statement
Variables can only be accessed by pointers, pointer is on the
left hand side
*m_fish[m_nFish] = new Goldfish(capacity); or Goldfish();
<type>* name = new <type>(parameters)
Memory is freed only after delete is used
Do not delete something that has been deleted or is not
dynamically allocated
for (inti=0;1<5;i++)
onion[i] = new dullExample();
Five pointers that point to five dynamically allocated objects
for (inti=0;i<5;i++)
delete onionlil; or delete *(onion +i)
Delete all five dynamically allocated objects
dullExample::dullExample () {
evenDuller = new superDull(); // new object
}
int main () {
dullExample* faucet = new dullExample();
cout << faucet->evenDuller->lame << end];
delete faucet; //ERROR
}
Delete faucet & dullExample,>dullExample dynamically
allocates an object, ONLY if you do not have a destructor
Structures
struct Student {
//Member variables, data members
int age;
string name;
//Member functions
void setAge(int n); //Mutator
string getName(); //Accessor
1
int main() {
Student k; //k is an object of type Student
k.name = “Fred”;
k.age = 5;

k.age++ //age now equal 6
}

Syntax: an object of some type . the name of the member

a pointer to an object of some struct/class type => the name
of a member of that struct/class type

* By definition -> means the same as *

Inside the member function’s parameters there is something
called “this” a pointer to whatever you are working on.
Specify object when using functions

e void Target::move(char dir) - :: scope operator

* The constructor will be passed to a pointer to the
object that is being constructed, responsible for
initialization

Strings are initialized to empty, built-in types are garbage

Data members can be:
Private

* only accessed by member functions

* insures that user does not mess up program

* C(Called encapsulation

Public

* can be called and used by user

* You cannot have two members of a class with the
same name (variable and function)

* You can overload a function by using the same name,
but different parameters (pointer and arr or char arr
are same type)

Big objects are usually passed by reference

***The only difference between struct and class is that class
members are inherently private if not declared, and struct are
public

**Constructor initializes : Student();

* Can be multiple constructors, with different

parameters

**Destructor deletes objects in memory: ~Student();
If you want to pass a const parameter to a function, make
sure any functions that are called inside are constant
void Target::move(char dir) const { }
Student A[5]: array of five Student objects
A[2].name = “Fred”; the third student object is named Fred
Student *p p->name; p points to first member in struct

* Accessors are implemented as const functions
Local variables (“automatic) live on the stack, dynamic live in
the heap, the newest local variable is on the top of the stack
Constructor with no arguments is called zero-argument
constructor

¢ Compiler will write default constructor if you do not

DO NOT try and follow a nullptr or delete an already deleted
element
Classes
A construct used to group related fields (var) and methods
* Every instance of a class has its own members
When defining functions outside of class definition
return type Class/-name::function_name(argument_list)
Cat p1; // creates a Cat instance using default constructor

Constructors can be called within a constructor
Initialization list
* Organizes initialization statement
Cat:: Cat()
: m_age(0), m_weight(0), m_gender(1)
{
Body of code;
} obj1, obj2; //declaring objects right away class definition
Cat *pKitty = new Cat();
pKitty->meow();
Destructor ~Cat();
* No parameters, no return type
¢ Cannot be manually called
Called when local variable falls out of scope or delete is used
There can only be one destructor
~SuperinterestingExample () {
cout << "[!] Destructor called!" << endl;
delete ob;

}
int main () {

// NOTICE: sup is now a dynamically allocated var
SuperinterestingExample* sup = new SuperinterestingExample()
cout << sup->ob->actuallyNotThatInteresting << endl;

delete sup; //Calls destructor to delete all member variables

}

The compiler calls the constructor when you initialize a new
object, you do not have to call it
pKitty->Cat(); //ERROR
This Pointer

* Thisis a pointer to an object

* This holds the address of the object
When the parameter name is the same as private variable
name, you have to use this pointer
private:
string name; //Member variable
void Soda::setName(string name) {

this->name = name;

}
Precedence
(zx) (., >, ++a) (++a,!,, &, new, delete) (%, /,*(x))

(+I _)

Aquarium m_nFish =3 numSoda =3

m_fish L

Vending

quantity 4 6

= | = = | inventory | /
Goldfish A | | Goldfish B /
capacity(3) capacity(4) /
m_amount m_amount v v
“Pepsi” “Coke”

class Goldfish {
public:
Goldfish(int capacity);
~Goldfish();
void remember(char c);
void forget();
void printMemory() const; // Prints memory
private:
char *m_memory; // Pointer to memory.
int m_amount; // # of chars remembered.
int m_capacity; // # of chars this fish can remember.
|3
int MAX_FISH = 20;
class Aquarium {
public:
Aquarium();
bool addFish(int capacity);
Goldfish *getFish(int n);
void oracle();
~Aquarium();
private:
Goldfish *m_fish[MAX_FISH]; // Pointers to fish.
int m_nFish; // Number of Fish.
|3
Aguarium::Aquarium() {
m_nFish = 0;
}
bool Aquarium::addFish(int capacity) {
m_fish[m_nFish] = new Goldfish(capacity);
m_nFish++;
return true;
}
Aguarium::~Aquarium() {
for (inti=0; i< m_nFish; i++)
delete m_fishl[il;
}
void Aquarium::oracle() {
for (inti=0;i<m_nFish; i++)
m_fish[i]->printMemory();
m_fish[i]->forget();
}
If Aquarium declares a Goldfish object, but does not give it a
capacity, it will not compile, since there is no default
constructor for Goldfish. You have to construct Goldfish,
before Aquarium constructs.
Aqguarium() : Bob(10) { }
private:
Goldfish Bob;
Constructing: Inner = Outer (Goldfish, then Aquarium)
Destructor: Outer = Inner (Aquarium, then Goldfish)
Reference

int& n — pass-by reference: changes made to n inside function

will remain outside the function, access variable outside
inta=2;
int&b=a;//a=2,b=2

a=4;//a=4,b=4
Passing a pointer by reference (int* &p)
class Soda {
public:
Soda();
void setName(string name); string getName() const;
private:
string name;
2

void Soda::setName(string name) {

this->name = name; // We have to use this->name here.

}
class VM {

public:
VM(int n);
~“VM();
void restock(string name,int quantity);
Soda* getSoda(string name);
bool buySoda(string name);
private:
Soda* inventory[MAXSODA]; int quantity[MAXSODA];
int numSoda;
|3
VM::VM(int n) {
numSoda = n;
for(int i=0;i<numSoda;i++)
inventory[i] = new Soda();
}
void VM::restock(string name,int quantity) {
for(int i=0;i<numSoda;i++)
if(inventoryl[i]->getName() == "NA") {
inventory[i]->setName(name);
this->quantity[i] = quantity;
break;
1
Soda* VM::getSoda(string name) {
for(int i=0;i<numSoda;i++)
if(inventoryl[i]->getName() == name)
return inventorylil;
}
bool VM::buySoda(string name) {
for(int i=0;i<numSoda;i++)
if(inventoryl[i]->getName() == name && quantity[i] > 0)
quantity[i]--;
return true;
int main() {
VM vm(5);
vm.restock("Coke",4);
vm.restock("Diet Coke",5);
if(vm.buySoda("Coke"))
cout << "l bought " << vm.getSoda("Coke")->getName()
<< endl;
else
cout << "Coke is sold out!!" << endl;
if(vm.buySoda("Pepsi"))

