Midterm Exam

29

CS231: Types and Programming Languages

Wednesday, February 5, 2020

Rules of the game:

- Write your name above.
- The exam is closed-book and closed-notes.
- Please write your answers directly on the exam. Do not turn in anything else. Do not use any other paper during the exam.
- The exam ends promptly at 3:50pm.

A bit of advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- Relax!

1

- 1. (3 points each) Consider the language of booleans and integers on the cheat sheet.
 - (a) Provide terms t and t' along with a derivation tree demonstrating that t → t', where the derivation tree has height exactly 3 (i.e., the longest path in the derivation tree from the root to a leaf has exactly 3 solid lines in it, each representing a usage of one of the inference rules), or say None if no such terms exist.

t = ((1+1)+1)+1t' = (2+1)+1

$$\frac{2 = 1 [+] |}{1 + 1 \rightarrow 2} (E - PLUSRED)$$

$$\frac{(1 + 1) + 1 \rightarrow 2 + 1}{((1 + 1) + 1) + 1 \rightarrow (2 + 1) + 1} (E - PLUS1)$$

(b) Provide a term t and type T along with a derivation tree demonstrating that t : T, where the derivation tree has height exactly 3, or say None if no such term and type exist.

t = (1+1) + 1T = Int

I Int (T-NUM)	I Int (T-NUM)	TING
1+1. Int	(I-PLUS) I Int	(TR)
(1+1)+1 Int		(I-FLUS)

(c) Provide three terms t_1 , t_2 , and t_3 such that $t_1 \longrightarrow t_2$ and $t_2 \longrightarrow t_3$ and t_3 is stuck. Say None if no such terms exist.

 $t_1 = ((1+1)+1) + true$ $t_2 = (2+1) + true$ $t_3 = 3 + true$

(d) Provide three terms t_1 , t_2 , and t_3 such that $t_1 \longrightarrow t_2$ and $t_2 \longrightarrow t_3$ and t_3 is value and there is no type T such that $t_1 : T$. Say None if no such terms exist.

 $t_1 = (if true + t.en | else + rue) + 1$ $t_2 = 1 + 1$ $t_3 = 2$

- 2. Suppose we augment the grammar for metavariable t from the cheat sheet with a new expression form t;t, which provides expression *sequencing*. The semantics of an expression $t_1;t_2$ is to evaluate t_1 , throw its value away, and return the value of t_2 as the value of the whole expression. (Sequencing is only useful in a language that has side effects, but we'll ignore that.)
 - (a) (5 points) Add rules to the small-step operational semantics to evaluate the new expression form. Give a name to each new rule.

$$\frac{t_1 \rightarrow t_1'}{t_1; t_2} \quad (E-S_{EQ} 1)$$

$$\overline{V_1; t_2} \quad \rightarrow t_2 \quad (E-S_{EQ} 2)$$

(b) (3 points) Add rules to the type system to support the new expression form. Give a name to each new rule. Note that since the value of t_1 in the expression $t_1; t_2$ is thrown away, it can be any kind of value.

 $\frac{t_1 T_1 t_2:T}{t_1, t_2:T} (T-SEQ)$

- 3. (5 points each) In this question, you will prove (portions of) type soundness for your new expression from the previous question.
 - (a) Provide only the cases specific to the new sequencing expression for the proof of the Progress theorem:

Theorem (Progress): If t : T, then either t is a value or there exists some term t' such that t \longrightarrow t'.

Assume that the proof is performed by induction on the derivation of t: T. Clearly state your induction hypothesis.

Induction hypothesis: if $t_0:T_0$ and $(t_0:T_0) \leq (t \ T)$, then either to is a value or there exists some term t'_0 such that $t_0 \rightarrow t'_0$

Case analysis on the root rule in the derivation t.T.

· Case T-SEQ: We know $t = t_1, t_2$ and $t_1: T_1$.

By the induction hypothesis, either t, is a value. $\Rightarrow 0$

 \Rightarrow By E-SEQ2, there exists $t'=t_2$ such that $t \Rightarrow t'$.

Or there exists some term t'_i such that $t_i \rightarrow t'_i$:

 \rightarrow By E-SEQ1, there exists $t' = t'_1, t_2$ such that $t \Rightarrow t'$

(b) Provide only the cases specific to the new sequencing expression for the proof of the Preservation theorem:
Theorem (Preservation): If t : T and t → t', then t' : T.
Assume that the proof is performed by induction on the derivation of t : T.
Clearly state your induction hypothesis.

Unduction hypotheses: df to To and $t_0 \rightarrow t_0'$ where $(t_0 \cdot T_0) \leq (t \cdot T)$, then $t_0' \colon T_0$. Case analysis on the root rule in the derivation $t \cdot T$ · Case T-SEQ. We know $t = t_1, t_2$ and $t_1 \cdot T_1$ and $t_2 \colon T$ Case analysis on the root rule in the derivation $t \rightarrow t'$: · Case E-SEQ1: We know $t_1 \rightarrow t_1'$ and $t' = t_1', t_2$. By the induction hypothesis, $t_1' \colon T_1$ Then by T-SEQ, $t' \cdot T$. · Case E-SEQ2. We know t_1 is a value and $t' = t_2$ We already know $t_2 \colon T$, so $t' \cdot T$