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CS 188 — Introduction to Machine Learning: Final

Winter 2017

Name:

UID:

Instructions

1. This exam is CLOSED BOOK and CLOSED NOTES.

3. Mark your answers ON THE EXAM ITSELF IN THE SPACE PROVIDED. If you make

a mess, clearly indicate your final answer (box it).

4. DO NOT write on the reverse side.
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For true/false questions, CIRCLE True OR False

e B

For multiple-choice questions, CIRCLE ALL CORRECT CHOICES AND ONLY THE
CORRECT CHOICES (in some cases, there may be more than one but always at least
one correct choice) for full credit.

8. For all other questions, show the work that you did to arrive at your answer so that we
can give you partial credit where appropriate.

9. If you think something about a question is open to interpretation, feel free to ask the
instructor or make a note on the exam.



Q Problem Points | Score
1-10 | True/False 20
11-15 | Multiple choice 15
16 Training and Validation 2
17 Kernels 4
18 Regularization 4
19 Evaluation 4
20 Generalizing linear regression 4
21 Hidden Markov Models 4
22 Clustering 8
Total 65
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True/False

1. (2 pts) (True/False) In a single iteration of the Adaboost algorithm, the weights on all the
misclassified points increase by the same multiplicative factor.

2. (2 pts) (True/False) In PCA, the first or top principal component corresponds to the
direction of smallest variance.

3. (2 pts) (True/False) Consider a mixture model of two 1-dimensional Gaussians, where the
mixture distribution of z € R is given by

P(z]0) = Z%/\/ (], 07),

o ] 1

Here N(z!uj, 0?) says that = is drawn from a Gaussian distribution with mean y; and
variance O'j We can identify the most likely posterior assignment, i.e., j that maximizes
P( = j|z) where z denotes the cluster membership of x by comparmg the values of
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4. (2 pts) (True/False) Let d(xy, Tn) denote the Euclidean distance between vectors @, and
T,,. Running K-Nearest Neighbors with distance measure ed@nm) instead of s T )




produces identical classification results.

5. (2 pts) (True/False) A neural network with no hidden layers and a single unit in the output
layer with a sigmoid activation function is equivalent to a logistic regression model.
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6. (2 pts) {('r\ﬁruer/ False) The EM algorithm is guaranteed to converge to a global maximum
of the log likelihood.
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7. (2 pts) (True/False) After normalizing the features (subtract each feature by its mean and

divide by its standard deviation), the predictions of the learning algorithm will no longer
depend on the units used to measure the features.

yT‘( W

P

8. (2 pts) (True/False) To choose the hyperparameter C in SVMs, we learn a SVM for
different values of C on a training set. Then, we evaluate each SVM (obtained for a fixed
C) on a test set and choose the C whose model has the best accuracy on the test set.
The accuracy of the chosen SVM on the test set is a good estimate of its generalization




accuracy.

9. (2 pts) (True/False) For a convex function f, if we find an input @, such that V f(zo) = 0,
then x is a global minimum of f.

10. (2 pts) (True/False) For a linear hypothesis hy(z) = w” @ + b, the distance of the origin
from the decision boundary is the same for hypotheses with parameters (w, b) and (cw, cb)
for any ¢ > 0.
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. (3 pts) We are given data for 10 instan

Multiple choice °

ces each of which has 5 features. The eigenvalues
of the covariance matrix are (20, 5,0,0,0). What is the fraction of variance retained if we
use only the first principal component to represent each individual?
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(3 pts) Which of the following properties must hold for a kernel matrix 7
2N

{a)’ Symmetric
(b) Invertible
(c) All entries are non-negative 8

@AH eigenvalues are non-negative.

(3 pts) For the same training data, you learn (unregularized) linear regression as well as
ridge regression for a fixed hyperparameter A > 0. Which of the following statements is
true about the optimal value of the residual sum of squares (RSS) cost function for either
model on the training data?

; )/"%The RSS of ridge regression is never lower than the RSS for linear regression.

(b) The RSS of linear regression is never lower than the RSS for ridge regression.

(¢) There are some datasets on which the RSS of linear regression is lower than ridge
regression and others with ridge regression having lower RSS.

(d) The RSS of both linear and ridge regression is the same on all datasets.

{(a

(3 pts) In learning which of these models is it important to consider solutions obtained
from multiple random initializations?

x(?u>\ A deep neural network with multiple hidden layers all of which have nonlinear acti-
~ vation functions A
(b) Logistic regression *




(c) Soft-margin SVM
{(d) Gaussian Mixture Models

15. (3 pts) Which of the following statements is true of the sigmoid function, o(z) = =
f/ a)j/} approaches 1 as x becomes large and positive
(b) approaches —1 as x becomes large and negative

£ N(Q)takes a value of atz =20
d) increases with i 1ncroasm T
W) :
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Short answers

16. (2 pts) Training and Validation

Figure 1 depicts the training and validation curves of a learner with increasing model

complexity.
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Figure 1. Error vs model complexity.
(a) (1 pts) Which of the curves is more likely to be the training error and which is more

likely to be the validation error? Indicate on the figure by filling in the dotted lines.

(b) (1 pts) In which regions does the model overfit or underfit? Indicate clearly on the
graph by labeling “overfit” and “underfit”.



17. (4 pts) Kernels

You experiment with the following kernels in a soft-margin SVM framework where each
of the input vectors = € R?:

1)

(b) (1 pts) The optimization routine for the dual SV’\/I problem compldmed that one of
the kernels is not valid. Which one (1-4)7 _J_
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(2 pts) Prove that your choice in (b) is indeed not a valid kernel.
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18. (4 pts) Regularization
The cost function for Ly-regularized linear regression is

J(0) = (y— X60)"(y — X0)+ 070,
where A > 0.
(a) (2 pts) Suppose we accidentally write
J(6) = (y — X0)"(y — X0) + \y"y

instead. Explain why this form of “regularization” has no effect.

(b) (2 pts) Suppose we use the correct expression but accidentally choose A < 0. Explain
briefly how this defeats the purpose of regularization.




19. (4 pts) Evaluation
You run an algorithm to classify spam versus non-spam emails. Your test data contains
900 non-spam (negative instances) and 100 spam (positive instances) emails. The classifier

predicts 90 true positives and 90 false positives.

(a) (1 pts) What is the true positive rate of the classifier (you can leave your answer in

Kfra;;j;ions% ? B
N Tep -

(b) (1 pts) What is the false positive rate of the classifier (you can leave your answer in
fractions)?

(c) (1 pts) What fraction of the emails predicted as spam by the classifier are truly spam
(you can leave your answers in fractions) 7

(d) (1 pts) What is the term used to describe the measure of performance that you
computed in part (c¢)?




20. (4 pts) Generalizing linear regression: Laplace regression
In class, we showed how linear regression (ordinary least squares) can be interpreted as
a probabilistic model. In this problem, we will explore how probabilistic models allow

us to generalize learning algorithms. In each of these examples, we have a training set
{(zn, yn)}f:;1 of N independent.instances where z,, € R”.

Now we model our target ¥, as coming from adding Laplace noise to a hyperplane. Specif-
ically )
D (Yn]n; 0) = _1_eXp _M
’ 2b b

(a) (2 pts) Write the log likelihood of the parameters [(8). Express your answer in terms
of yn, x,, 8, and b.
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(b) (2 pts) Show that the maximum likelihood estimate of @ is the 8 that minimizes a
new cost function: the sum of absolute residuals:

J(0) =" |yn — 6",

TN
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21. (4 pts) Hidden Markov Models
You are keen on monitoring your health over the summer. Your health state reflects if you
have a cold (state = 2) or you are feeling well (state = 1). Inspired by CS 188, you seek to
model your health with an HMM (because your health state on a given day is correlated
with your health state the next day). There are two possible output symbols, L = low or
H = high energy.

For this, you need to specify the model parameters § = {m, Q, E}, where 7 is the ini-

i

tial state distribution, @ are the state transition probabilities, and E are the emission
probabilities. You determine the parameters of the HMM as:

1 2 L H

12 1|1-a a lla 1—a
— 2 - _
= 2{%} Q= 2{ a 1—a} E 2{1 0 }

eil(L)=P(Y;=L|X;=1) =uq,
ei(H)=PY,=H|X;:=1)=1-—a,
e>(L) = P(Y, = LIX, = 2) = 1,
eos(H) = P(Y; = H| X, =2) =0.

We also have 0 < a < 1.

(a) (2 pts) What is the probability that you are well on the first day (state = 1) and
then get a cold (state = 2) the next day. That is, what is P(X; =1, Xy = 2) (
final answer must involve numbers and the parameter a)?
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(b) (2 pts) What is the probability that you are well on the first day (state = 1) and then
get a cold (state = 2) the next day, and that you feel high energy the first day and
low energy the second day. That is, what is P(X; =1, X, =2,V; = H, Y, = L)(Your
final answer must involve numbers and the parameter a) 7

PIvo=l Y=y Yol v -]
IR {7 %, pa PR = R {f
# [ - i o

SRR Ny e [ 0y o[ 5 ( [ |

P PO =0 P (Y= y =0 PLT=0 =2

13



22. (8 pts) Clustering
Recall that in K —means clustering we attempt to find K cluster centroids u, € R% k €
{1,..., K} such that the total distance between each datapoint and the nearest cluster

centroid is minimized. In other words, we attempt to solve:

N K
min Tkl @y — 2, 1
{uk},m}zz elizn = pel (1)

n=1 k=1

where N is the number of data points, 7., is a binary variable that is 1 if sample n is
assigned to cluster k£ and zero otherwise.

(a) (3 pts) Instead of holding the number of clusters K fixed, one can think of minimizing
(1) over all of K and g, and rp,. Show that this is a bad idea. Specifically, what is
the minimum possible value of (1) 7 What values of K and g, result in this value ?

14



(b) (2 pts) Recall that in one of the steps of the K-means algorithm, for a fixed assignment
of each sample to one of the K clusters (r,x), we compute the new cluster centroids
p,, by minimizing SN S Tkl — I ‘ '
Compute the gradient of the above objective function with respect to p,. For refer-
ence, here is a useful identity: V

f@) = el V@) =2e

15



(c) (1 pts) Set the gradient to zero and solve for p,. Show that the optimal g, corre-
sponds to the mean of the samples assigned to cluster .
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(d) (2 pts) We now consider clustering 1D data using K-means. We assume the number
of clusters K = 2. You are given four instances: (zi, za, T3, :z:@;) = (1, 10, 20, 9) where
each z, € R,n € {1,2,3,4}. The current estimates of r,; is represented by the

following matrix:

O =
o

R - ll

)

e

Here entry (n, k) of this matrix is 7, 4.

Show the update for the cluster centroids u1, 1o (you do not need to simplify your
answer).
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(Blank page provided for your work)
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