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Question | Points | Score

1 5
2 5
3 8
4 3
5 4
6 8
7 10
8 5
9 4
10 8
11 3
12 2

Total: 65




Basic Probability

. For parts (a) and (b) consider 2 probability distributions pi(z) = N(u1,01) and pa(z) = N(uz,03).
N (u, o) refers to a Gaussian distribution with mean g and standard deviation o.
(a) (2 points) Compute KL divergence between p; and po, i.e. KL(p1||p2). Note that no credit will be
given if you do not show the derivation.
(b) (1 point) Compute KL divergence between py and py, i.e. KL(p2||p1).
(¢) (2 points) KL divergence is not symmetric w.r.t py, pa, i.e. KL(p1||p2) # KL(p2||p1). Use K L(p1||p2)
and K L(p2||p1) to construct a function f(pi|[p2) which is symmetric w.r.t p1, pa.

Classification

. Consider a binary (0/1) classification setup with binary label y for a given image x. y is hence assumed to
follow a Bernoulli distribution w.r.t z; in other words, p(y|z) is assumed to be a Bernoulli distribution.
Assume the output of your classifier is § € (0,1). As seen in problem set 4, you can hence write
plyle) =g (1 — ).
(a) (2 points) Find a, b such that p(y|z) = ay+b and p(y|z) = §¥(1—9)~¥) are equivalent for y = 0, 1.
No credit will be awarded if the approach to find a, b is not shown. It is fine to write a, b as functions
of .
(b) (1 point) We can hence define a new loss function L(y,3) = —ay — b where a,b are the values
obtained in the previous part. Compute %.

(¢) (2 points) Even though the two formulations of p(y|z) seem point wise equivalent, can L(y, ) =
—p(y|z) = —ay — b be used to train a classifier via stochastic gradient descent? [Hint: Use your
answer in part (b)]

Gradient Descent

. Consider a loss function L(y*,y) = B(y — y*)?. y* and B are constants with 3 > 0. Let y denote the
output of a machine learning model. The goal is to minimize this loss using gradient descent and find
the optimal value of y.

(a) (1 point) What is the minimum possible value of L(y*,y)?

(b) (1 point) Can you derive a closed form expression for the optimal value of y which is a minimizer
of L(y*,y)? If yes, derive the closed form expression and the optimal value of y.

)
) (1 point) Write the gradient update step for the variable y, assuming a learning rate a.

(e) (2 points) Assuming the initial value of y to be yo, what will be the value of y after n updates?
(f)

(2 points) Find a range of values of the learning rate « for which y will converge to its optimal value
derived in part (b) as n — oc.

3-D geometry

. (3 points) Suppose you apply the 8 point algorithm and obtain the fundamental matrix to be F =
U diag[3,5,0] VT, where U and V are the matrices in the singular value decomposition of F. Project F
to the space of essential matrices to obtain the best approximation to the essential matrix for this system
of correspondences.



2D Transformations and Homography

5. (4 points) Show that the origin in 2D coordinates does not necessarily map to the origin under 2D
projective transformations.

6. Amidst the pandemic blues, you decide to take a walk to the UCLA campus, and capture a video of
Royce Hall. The spatio-temporal description of a point in this video can be given as I(x,y,t), where x,y
denote the spatial location in the frame, and ¢ denotes the temporal id of a video frame. Assume the
video has N frames, i.e. ¢ ranges from 0 to IV — 1. Since the campus is closed, your video has people and
objects moving sparsely across the scene, with the majestic Royce Hall in the background. The camera
and the background scene are held fixed w.r.t to each other while this video is captured.

(a) (3 points) Propose an algorithm to extract an Image of Royce Hall (static background from the
video). [Hint: Can you apply one of the filters learned in class to the video frames for this problem?
The solution ideally wouldn’t be more than 5 lines.]

(b) (5 points) You posted this video online, motivating your friend to also visit the Royce hall and take
a video. But instead of keeping the camera fixed, your friend rotated the camera while taking the
video. Will the algorithm in part (a) work for the video captured by your friend? If yes, justify.
If no, propose a modification to your answer in part (a) to extract the image of the background.
Assume that the only change to the camera pose was rotation (i.e. there was no camera translation).

CNNs

7. Consider a 2D convolution of an image I of size h x w with a kernel K of size n x n. Let the output of
this convolution be denoted I ® K, which has size r x ¢. Assume the convolution has no padding.

(a) (4 points) Assume we can flatten the image I and the convolution output 7 ® K into column vectors
I', (I®K)'. Prove that there exists a matrix K’ such that the convolution operation can be evaluated
in terms of matrix multiplication, i.e. (I ® K)' = K'I".

(b) (3 points) Propose a method using K'7 to transform an input of size 7 X ¢ into an output of size

h x w. This idea is the key idea behind transposed convolutions, which are used for obtaining
pixel-wise predictions from CNNs.

(¢) (3 points) Assume we compute the 2D convolution using matrix multiplication, i.e. (I®K) = K'I’.
Does there always exist a transposed convolution that inverts this 2D convolution? In other words,
for any kernel K with associated matrix K’ (defined in part a), does there always exist a matrix
K, such that I' = K, ,((I ® K)')? Please justify your answer.

8. (b points) Consider the following 3 layer fully-convolutional neural network: CONV1-MAXPOOL-CONV2-
MAXPOOL-CONV3. Here

e CONV1 is a 2-d convolutional layer with input-channels=3, output-channels=10, filter-size=5,
stride=2, padding=0 (no padding)

e CONV2 is a 2-d convolutional layer with input-channels=10, output-channels=20, filter-size=5,
stride=2, padding=0

e CONV3 is a 2-d convolutional layer with input-channels=20, output-channels=40, filter-size=5,
stride=2, padding=0

e MAXPOOL is a 2-d max pooling layer with filter-size 2, stride 2, padding=0.

Given an input image of size 3 x 256 x 256, find the size of the output of this CNN. No credit will be
given without showing the steps to the solution.



10.

11.

Corner Detection

. (4 points) Given a Harris quadratic (sum of squared differences) function E(u,v) = 1000u? + 1000v? +

10uw, derive whether a corner, edge, or flat region was detected. For this question, use the following rule
for determining whether a corner, edge, or flat region was detected:

e Corner: both eigenvalues A1, Ay > 100, where A1, Ao are the eigenvalues of the Harris covariance
matrix (structure matrix)

e Edge: either A\; > 100, Ay < 100 or A; < 100, A2 > 100

e Flat region: both A1, Ao < 100

No credit will be given without proper justification/derivation.

Homogeneous Coordinates

Note that no credit will be given without proper justification.

(a) (3 points) Prove that, in homogeneous coordinates, a line in a 2D plane can be written as Tz =0,
where & = A(z,y,1) with XA #£ 0 and [ = (a, b, ¢) with (a,b) # (0,0).

(b) (3 points) Using the previous result, prove that, in homogeneous coordinates, the intersection of
two distinct 2D lines with equations I7% = 0, [ Z = 0 can be obtained by & = [T x [T, where [T x [T
is the cross-product of [T and [2". For this part, assume that the two lines intersect.

¢

(¢) (2 points) Using the previous result, show that, in homogeneous coordinates, the “intersection” of

two parallel lines is at infinity (i.e. a point in homogeneous coordinates with the last coordinate 0).

Interview Brain-teaser

(3 points) There are various proven technologies to scan a 3D object in the industry, such as stereo
cameras, structured light cameras, and time of flight sensors. In this question, let us see if we can propose
anew 3D measurement system based on liquid deformations. If successful, this liquid-based system would
be a monocular (single viewpoint) system that does not require ultrafast lasers or circuitry.

Let’s abstract the problem. Imagine you are in an empty room with the following items:

e A black statue you would like to 3D scan

e A bucket

e A few gallons of Milk

e A measuring cup

e A ruler

e An ordinary, fixed-focus camera connected to a computer

Provide a sketch for how you would obtain the 3D shape of the object. Note that a hint for this question
has been provided on Piazza (see post 220).



(Bonus) Perfection is not always desired

12. We wish to train a GAN (i.e. the generator G and discriminator D) using the loss function discussed in
the lecture, i.e. ming maxp Eqnp, [log(D(2))] + E,np. [log(1 — D(G(%)))], where p,, p, are the real data
and noise distributions, respectively. However, assume that we already have a perfect discriminator D,
i.e. D(x) =0 if x is a sample generated by the generator, and D(x) = 1 if x is a sample chosen from the
training dataset.

(a) (2 points) Using this perfect discriminator (which is assumed to be fixed and always perfect), and
a randomly initialized generator network as a starting point, will the training process ever result in
a usable generator network? Explain using the loss function for the generator.
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