Problem 1. A Flip-DFA (FDFA) is like a DFA except that some of its states are flipping
states. When an FDFA enters a flipping state, it reverses the remaining input (e.g. abede
becomes edcba) and then carries on computation as usual. Flipping states are indicated by
being triangular. Any state may be a flipping state, including the starting state and
accepting states.

Example: Consider the following FDFA F where g; and g; are flipping states, and all
transitions not specified go to some other non-accepting state. On input adcb, F will first
consume the a to go from state go to g1, leaving remaining input dcb. Then, upon entering
flipping state gy, F will reverse the remaining input to be (dcb)® = bed. F will then
consume b and ¢ to go from g to g, and then from g3 to g3, leaving input d. After entering
q3, F will then reverse the remaining input to dR = d. Then, F will consume d to go from
g3 to g4 where F will accept.
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a) (15 points). Create a FDFA that decides Lgg = {0"1" | n 2 0).

b) (10 points). Let F be the following FDFA over the alphabet £ = {0, 1,2,3,4,5,6,7).
We assume that all transitions not specified go to some other non-accepting state. Here,
41,93, g5, and g7 are flipping states. Give two strings other than the empty string that
are accepted by F.

We will prove the following pumping lemma in two parts:

Lemma 1. For all FDFAs E there exists an n € N such that for all x € L(F) with |x| > n,
there exist strings a, b, c,d, e such that x = abcde, and

i. Vi, abicdle € L(F)
ii. bl +|d| >0
iii. \abdel < n

¢) (30 points). Let an Even-Flip-FDFA F be a FDFA where every cycle in the state
diagram of F¥ has an even number of flipping states. Prove that Lemma 1 holds for all
Even-Flip FDFAs. Hint: Part (1b) should help.

& (20 points). Prove Lemma 1 holds for all FDFAs.
Note that proving (1d) also proves (Ic).



Problem 2. A Nondeterministic Line Robot (NLR) is a robot that moves along a number
line. Tt is controlled by a hardwired program which is like an NFA except that each of its
transitions require no input, take gg;um&sgw carry out, and are accompanied by a
direction in {Left, Right) mdlcatmg the direction that the robot should move on that time
step. An NLR is specified solely by this control NFA.

An NLR operates as follows: It is placed at the origin of an infinite number line and
powered on, putting it in its start state. At each time step while it is powered on, it must
nondeterministically choose to follow one of the transitions from its current state. It will
then move one unit in the direction indicated by the label on the transition, either Left or
Right. After moving, if it reaches an accepting state from this transition, then it may
nondeterministically choose to power down. Alternatively, it can choose not to power
down and to continue operation. If there is a case where the robot cannot transition or
power down, then it self-destructs and explodes.

The location-set of an NLR R, denoted by Loc(R), is the set of all positions on the number
Jine where the robot R might end up when it powers down. Note that self-destructing and
exploding at a position does not count as powering down at that position. Formally,
Loc(R) = {x | R could power down at position x}.

Example: The location-set generated by the NLR specified below is {x | x = -2}
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a) (15 points). Given two fixed numbers a, b € N, specify a NLR for the location-set
=f{ax+by|x,y € Z}.

b) (30 points). We will prove the following theorem in two parts

Theorem 1. Let an Unproductive-NLR be a NLR R such that every cycle in the state
diagram of R has an equal number of right and left transitions. If R is an
Unproductive-NLR, then Loc(R) is finite.

i. (20 points). Prove that if R is an Unproductwe-NLR and there is a a path through R
that directs R to position k in m tioe steps, then there exists some path to position
k with no repeated states.

ii. (10 points). Prove Theorem 1 using (2b.i).

¢) (30 points). Prove that for any NLR R, there exists an n € N such that if R ever powers
down at a position farther than » units from the origin, then there are an infinite set of
positions at which R can power down. In other words, prove that for any NLR R, there
exists an n € N such that if there is a k € Loc(R) with [k| > n, then Loc(R) is infinite.
Hint: Think of how we proved the pumping lemma.

d) Extra Credit (30 points). An NLR that becomes Drone-Friended" operates the same
as before except that when it reaches an accepting state, in addition to the option of
doing nothing or powering down, it can instead choose to call its drone friend to
immediately fly it back to the origin. Once back at the origin, it will continue operating
as usual. Note that it will continue operating from the state that it was in when it called
its drone friend, and will nof reset its state to the starting state.

Let R be an NLR such that Loc(R) is of finite size n. If R becomes Drone-Friended,
then what is the maximum size of the new location-set it now recognizes? Why? Give
the answer as a function of n or list it as infinity. Then explain why.



