
Name: Erynn-Marie Phan

Student ID: 504 757 459

CS181 Winter 2019 - Final
Due Friday, March 15, 11:59 PM

• This exam is open-book and open-notes, but any materials not used in this course are prohibited,
including any material found on the internet. Collaboration is prohibited. Please avoid temptation
by not working on the final while you are in the presence of any other student who has taken or is
currently taking CS181. Be extra careful if you live with or meet regularly with a student of
this class. If you have any questions about the exam, ask the TA or Professor Sahai by email or after
class. Do not ask other students. You are allowed to use any theorem shown in class or in the
textbook, as long as you clearly cite it. Please monitor Piazza for any clarifications. Do not post any
questions on piazza.

• We suggest that you spend approximately 12 hours (not necessarily contiguous) to take this exam. Start
early so that you have time to understand and think about the problems. The solutions must be
submitted on Gradescope by 11:59 PM on Friday, March 15.

• Place your name and UID on every page of your solutions. Retain this cover sheet and the next sheet
with the table as the first pages of your solutions. Please use separate pages for each question.
All problems require clear and well-written explanations.

• There are 4 questions worth a total of 230 points and an extra credit question worth 40 points.

• For each part (except for the extra credit), if you describe a non-trivial approach that you tried using to
solve the problem but realized it doesn’t work and explain correctly why it doesn’t work and then write
“I don’t know” you will get 20% points for that problem. You will not get 20% points for just writing
“I don’t know”. Whether your stated approach was indeed non-trivial is solely at the discretion of the
grader.

• 5% extra credit will be awarded to solutions written in LATEX.

Please handwrite the following honor code agreement and sign and date in the spaces provided.
Honor Code Agreement: I promise and pledge my honor that during the exam period, I did not and
will not talk to any person about CS 181 material except for the professor or the TA, nor will I refer to any
material except for the class textbook and my own class notes. I will abide by the CS181 Honor Code.

Question Points

1

2

3

4

EC

Total

Name: Erynn-Marie Phan

Student ID: 504 757 459

1. Decidability/Recognizability (60 points)

Height
For a Turing machine M , let height(M) denote the length of the shortest string accepted by M (or ∞ if
M does not accept any string). Consider the following language

Lheight = {〈M〉 | height(M) < |〈M〉|},

that is the language of Turing machines that accept a string that is shorter than their own description.

a) (15 points) Show that Lheight is undecidable.

Intuition:
If a decider D exists, we can construct a machine M that runs D on its own description. If D(〈M〉)
accepts, M rejects all x. If D(〈M〉) rejects, M accepts all x. This M cannot exist. Therefore D cannot
exist.

Formal Solution:
Suppose there exists a decider D for Lheight. Construct a machine M that runs the following algorithm:

• On input x

• By the recursion theorem, let y = 〈M〉
• run D(y)

– If it accepts, reject.

– If it rejects, accept.

Analysis of M :

• Case 1: D(〈M〉) accepts
〈M〉 ∈ L(D) implies that height(M) < |〈M〉|
However by construction, L(M) = ∅, height(M) =∞
⇒⇐
• Case 2: D(〈M〉) rejects
〈M〉 /∈ L(D) implies that height(M) ≥ |〈M〉|
However by construction, L(M) = Σ∗

Since ε ∈ L(M) and 〈M〉 is not the empty string, height(M) = 0 < |〈M〉|
⇒⇐

Since there is a contradiction in every case, neither M nor D can exist.

Name: Erynn-Marie Phan

Student ID: 504 757 459

b) (15 points) Show that Lheight is recognizable.

Intuition:
The recognizer R can run M(s) for all s ∈ Σ∗ such that |s| < |〈M〉| using diagonal scheduling.
(Although there are a finite number of strings, diagonal scheduling is necessary in case M(s) loops for
some s). If M ever accepts, R should accept.

Formal Solution:
Construct a machine R that runs the following algorithm:

• On input 〈M〉
• If the input is not a description of a Turing machine, reject.

• Let X = {x1, x2, . . . } be a list of all strings xi ∈ Σ∗ such that |xi| < |〈M〉|
• Run M(xi) for all xi ∈ S using diagonal scheduling.

– If any computation M(xi) accepts, accept.

• Reject.

Analysis of R:

• Case 1: 〈M〉 ∈ Lheight

There exists an x ∈ L(M) such that |x| < |〈M〉|
x ∈ X
(From lecture) Using diagonal scheduling, R will eventually run M(x), and it will eventually
accept.
By construction, R also accepts.
〈M〉 ∈ L(R)

• Case 2: 〈M〉 /∈ Lheight

For all xi ∈ X, M(xi) either loops or rejects.
By construction, R either loops or rejects.
〈M〉 /∈ L(R)

Therefore R recognizes Lheight.

Name: Erynn-Marie Phan

Student ID: 504 757 459

Trump Machine
A Turing machine M over alphabet Σ = {0, 1, $} and tape alphabet Γ = {t, 0, 1, $,]} is a Trump
machine if for all x ∈ Σ∗ such that x contains at least 5.7 billion $ symbols, during the execution of M
on input x, M erases all $ symbols from its tape (replaces them with blanks), writes a single wall
symbol], and then shuts down (either accepts or rejects).

Let
LTrump = {〈M〉 |M is a Trump machine}.

c) (15 points) Show that LTrump is undecidable.

Intuition:
If a decider D exists, we can construct a machine M that runs D on its own description. If D(〈M〉)
accepts, M loops. Then M can’t be a Trump machine. If D(〈M〉) rejects, M can satisfy all the
necessary conditions to be a Trump machine. This M cannot exist. Therefore D cannot exist.

Formal Solution:
Suppose there exists a decider D for LTrump. Construct a machine M that runs the following algorithm:

• On input x

• By the recursion theorem, let y = 〈M〉
• Run D(y)

– If it accepts, loop.

– If it rejects

∗ Overwrite the $ symbols with blanks.

∗ Write a wall symbol.

∗ Accept.

Analysis of M :

• Case 1: D(〈M〉) accepts
〈M〉 ∈ L(D) implies that M is a Trump machine.
However by construction, M loops on every input. Therefore M is not a Trump machine.
⇒⇐
• Case 2: D(〈M〉) rejects
〈M〉 /∈ L(D) implies that M is not a Trump machine.
However by construction, for all x, M overwrites all the $ symbols with blanks, writes a single wall
symbol, and accepts. Therefore M is a Trump machine.
⇒⇐

Since there is a contradiction in every case, neither M nor D can exist.

Name: Erynn-Marie Phan

Student ID: 504 757 459

d) (15 points) Show that LTrump is unrecognizable.

Intuition:
If a recognizer R exists, we can construct a machine M that on input x, runs R on its own description
for |x| steps. If R(〈M〉) accepts, M loops. If R(〈M〉) rejects or doesn’t finish in |x| steps, then M can
satisfy all the necessary conditions to be a Trump machine. This M cannot exist. Therefore R cannot
exist.

Formal Solution:
Suppose there exists a recognizer R for LTrump. Construct a machine M that runs the following
algorithm:

• On input x

• By the recursion theorem, let y = 〈M〉
• Run R(y) for |x| steps.

– If it accepts, loop.

– If it rejects and or doesn’t finish

∗ Overwrite the $ symbols with blanks.

∗ Write a wall symbol.

∗ Accept.

Analysis of M :

• Case 1: R(〈M〉) accepts in t steps.
〈M〉 ∈ L(R) implies that M is a Trump machine.
However by construction, M loops on $t+1. Therefore M is not a Trump machine.
⇒⇐

• Case 2: R(〈M〉) rejects or loops.
〈M〉 /∈ L(R) implies that M is not a Trump machine.
However by construction, for all x, M overwrites all the $ symbols with blanks, writes a single wall
symbol, and accepts. Therefore M is a Trump machine.
⇒⇐

Since there is a contradiction in every case, neither M nor R can exist.

Name: Erynn-Marie Phan

Student ID: 504 757 459

2. Inconclusive Decider (40 points)
An Inconclusive Decider is like a decider except that on some set of inputs, instead of accepting or
rejecting, it may instead halt and output “INCONCLUSIVE”.

Formally, we say that a language L is k-Inconclusive-Decidable for some k ∈ N ∪ {∞} if there exists a
Turing machine M such that

• For all x such that x ∈ L, M either halts and outputs “ACCEPT” or halts and outputs
“INCONCLUSIVE”.

• For all x such that x /∈ L, M either halts and outputs “REJECT” or halts and outputs
“INCONCLUSIVE”.

• M halts and outputs “INCONCLUSIVE” on at most k distinct inputs x.

(Note that L is decidable if and only if it is 0-Inconclusive-Decidable)

a) (5 points) Show that all languages are ∞-Inconclusive-Decidable.

Intuition:
A machine that halts and outputs “INCONCLUSIVE” for every x is an Inconclusive Decider for
every language.

Formal Solution:
Consider the machine M which runs the following algorithm:

• On input x

• Halt and output “INCONCLUSIVE”

Consider the arbitrary language L.
For all x ∈ L, M halts and outputs “INCONCLUSIVE.”
For all x /∈ L, M halts and outputs “INCONCLUSIVE.”
M halts and outputs “INCONCLUSIVE” for an infinite number of distinct inputs x.
Therefore M is an Inconclusive Decider for L, and L is ∞-Inconclusive-Decidable.

Name: Erynn-Marie Phan

Student ID: 504 757 459

b) (20 points) Show that LHaltε = {〈M〉 |M(ε) halts} is not 1-Inconclusive-Decidable.

Intuition:
If an Inconclusive Decider D exists, we can construct two machines M1 and M2. Both can run D on
their own descriptions and contradict the accepting and rejecting cases in the normal way. If D(M1)
outputs “INCONCLUSIVE”, M1 loops. If D(M2) outputs “INCONCLUSIVE”, M2 halts. Then the
decider would be wrong if it output accept or reject for either machine, but it cannot output
“INCONCLUSIVE” for both, since they are not the same machine.

Formal Solution:
Suppose LHaltε is 1-Inconclusive-Decidable. Then there exists a Turing machine D such that

• For all x ∈ LHaltε , D either halts and outputs “ACCEPT” or halts and outputs
“INCONCLUSIVE.”

• For all x /∈ LHaltε , D either halts and outputs “REJECT” or halts and outputs
“INCONCLUSIVE.”

• D halts and outputs “INCONCLUSIVE on at most 1 distinct input x.

Construct a machine M1 which runs the following algorithm:

• On input x

• By the recursion theorem, let y = 〈M1〉
• Run D(y)

– If it accepts, loop.

– If it rejects, halt and accept.

– If it outputs “INCONCLUSIVE,” loop.

Construct another machine M2 which runs the following algorithm:

• On input x

• By the recursion theorem, let y = 〈M2〉
• Run D(y)

– If it accepts, loop.

– If it rejects, halt and accept.

– If it outputs “INCONCLUSIVE,” halt and accept.

Analysis of M1 and M2:

• Case 1: D(〈M1〉) accepts OR D(〈M2〉) accepts
D accepts at least one of the machines. Let one of the accepted machines be M .
〈M〉 ∈ L(D) implies that M(ε) halts.
However, by construction, M(ε) loops.
⇒⇐
• Case 2: D(〈M1〉) rejects OR D(〈M2〉) rejects
D rejects at least one of the machines. Let one of the rejected machines be M .
〈M〉 /∈ L(D) implies that M(ε) loops.
However, by construction, M(ε) halts and accepts.
⇒⇐
• Case 3: D(〈M1〉) outputs “INCONCLUSIVE” AND D(〈M2〉) outputs “INCONCLUSIVE”
D outputs “INCONCLUSIVE” for both machines.
Then D outputs “INCONCLUSIVE” for at least 2 distinct inputs.
⇒⇐

Since there is a contradiction in every case, M1, M2, and D cannot exist.

Name: Erynn-Marie Phan

Student ID: 504 757 459

c) (15 points) Show that LHaltε = {〈M〉 |M(ε) halts} is not 2-Inconclusive-Decidable.

Intuition:
If an Inconclusive Decider D exists, we can construct three machines M1, M2, and M3, which run D
on their own descriptions and contradict the accepting and rejecting cases in the normal way. If
D(M1) outputs “INCONCLUSIVE”, M1 loops. If D(M2) outputs “INCONCLUSIVE”, M2 accepts.
If D(M3) outputs “INCONCLUSIVE”, M3 rejects. Then the decider would be wrong if it output
accept or reject for any of these machines, but it cannot output “INCONCLUSIVE” for all three,
since they are not the same machine.

Formal Solution:
Suppose LHaltε is 2-Inconclusive-Decidable. Then there exists a Turing machine D such that

• For all x ∈ LHaltε , D either halts and outputs “ACCEPT” or halts and outputs
“INCONCLUSIVE.”

• For all x /∈ LHaltε , D either halts and outputs “REJECT” or halts and outputs
“INCONCLUSIVE.”

• D halts and outputs “INCONCLUSIVE on at most 2 distinct input x.

Construct two machines M1 and M2 identical to the ones in part (b).
Construct a machine M3 that runs the following algorithm:

• On input x

• By the recursion theorem, let y = 〈M2〉
• Run D(y)

– If it accepts, loop.

– If it rejects, halt and accept.

– If it outputs “INCONCLUSIVE,” halt and reject.

Analysis of M1, M2, and M3:

• Case 1: D accepts at least one of the machines.
Let one of the accepted machines be M .
〈M〉 ∈ L(D) implies that M(ε) halts.
However, by construction, M(ε) loops.
⇒⇐
• Case 2: D rejects at least one of the machines.

Let one of the rejected machines be M .
〈M〉 /∈ L(D) implies that M(ε) loops.
However, by construction, M(ε) halts and accepts.
⇒⇐
• Case 3: D outputs “INCONCLUSIVE” for all 3 machines

Then D outputs “INCONCLUSIVE” for at least 3 distinct inputs.
⇒⇐

Since there is a contradiction in every case, M1, M2, M3, and D cannot exist.

Name: Erynn-Marie Phan

Student ID: 504 757 459

3. Perpetual Machines (70 points)
A perpetual machine P is like a Turing machine, except that it never halts on any input. Instead of
containing accept and reject states, qaccept and qreject, it contains a non-halting accepting state q∗.
When P enters q∗, instead of terminating its computation, it continues executing and can transition out
of this state.

A perpetual machine P computes a language L if

• For all x ∈ L, P (x) enters q∗ an infinite number of times

• For all x 6∈ L, P (x) does not enter q∗ an infinite number of times

If there does not exist any perpetual machine P that computes a language L, we say that L is
uncomputable by perpetual machines.

a) (25 points) Show that the language

Lloop = {〈M〉 |M is a Turing machine and M(ε) loops}

is computable by perpetual machines.

Intuition:
We can construct a machine P that on input 〈M〉 simulates M(ε). After each step of M(ε), P enters
and exits q∗. Then P enters q∗ an infinite number of times if and only if M(ε) loops.

Formal Solution:
Construct a perpetual machine P . P has a special state q∗ which it does not enter unless the algorithm
explicitly says that it does. P runs the following algorithm:

• On input 〈M〉
• While (M is a Turing machine and M(ε) has not halted):

– Simulate one step of M(ε)

– Enter and exit q∗

• While (true):

– Go to any state q such that q 6= q∗

Analysis of P :

• Case 1: 〈M〉 ∈ Lloop

Then M is a Turing machine and M(ε) loops.
Then P (〈M〉) never exits the first While loop.
Then P (〈M〉) enters q∗ an infinite number of times.

• Case 2: 〈M〉 /∈ Lloop

Then one of the following cases is true.

– M is not a Turing machine.
Then P (〈M〉) never enters the first While loop.
Then P (〈M〉) enters q∗ 0 times.

– M(ε) halts in t steps.
Then P (〈M〉) exits the first While loop after t steps.
Then P (〈M〉) enters q∗ exactly t times.

Therefore P (〈M〉) does not enter q∗ an infinite number of times.

Therefore P computes Lloop.

Name: Erynn-Marie Phan

Student ID: 504 757 459

b) (20 points) Construct a language L ⊆ Σ∗ that is uncomputable by perpetual machines and prove
that this is the case. (Hint: Use diagonalization)

Intuition:
Perpetual machines are countably infinite because each one can be represented by a string. Therefore
there is an enumeration. Using an enumeration for strings and an enumeration for languages of
perpetual machines, we can make a similar argument that we made in class to show that there exists a
language which is not computed by any perpetual machine in the enumeration.

Formal Solution:
Perpetual machines are countably infinite because each one can be represented by a string. Since each
perpetual machine computes 1 language, the languages computed by perpetual machines are also
countably infinite.
Let {s1, s2, s3, . . . } be an enumeration of all strings in Σ∗.
Let {L1, L2, L3, . . . } be an enumeration of all languages of perpetual machines. Li ⊆ Σ∗ for all i.
Let there be a boolean value Li(sj) for a language Li ⊆ Σ∗ and a string sj ∈ Σ∗ defined as follows:

Li(sj) =

{
True sj ∈ Li

False sj /∈ Li

Construct the language L, which has the property that

L(si) = ¬Li(si) ∀i

Claim: L is not computable by perpetual machines.
Proof:

• Suppose L is computable by perpetual machines. Then it is in the enumeration {L1, L2, L3, . . . }.
• Therefore L = Li for some i ∈ N.

• Case 1: si ∈ Li

Then Li(si) = True.
By definition of L, L(si) = ¬Li(si) = False.
Then si /∈ L.
Then L 6= Li.
⇒⇐
• Case 2: si /∈ Li

Then Li(si) = False.
By definition of L, L(si) = ¬Li(si) = True.
Then si ∈ L.
Then L 6= Li.
⇒⇐

Because there is a contradiction in every case, L 6= Li for any i ∈ N.

Because L is not in the enumeration of languages computed by perpetual machines, it is not computed
by any perpetual machine.

Name: Erynn-Marie Phan

Student ID: 504 757 459

c) (25 points) Show that the language

LEmpty = {〈M〉 |M is a Turing machine and L(M) = ∅}

is computable by perpetual machines.

Intuition:
We can construct a machine N that on input 〈M〉 simulates M on all input strings using diagonal
scheduling. After each step of M , N enters and exits q∗. If M accepts a string, N never enters q∗

again. Then N enters q∗ an infinite number of times if and only if L(M) = ∅.

Formal Solution:
Construct a perpetual machine P . P has a special state q∗ which it does not enter unless the algorithm
explicitly says that it does. P runs the following algorithm:

• On input 〈M〉
• If M is a Turing machine

– For all strings s ∈ Σ∗, using diagonal scheduling

∗ Simulate one step of M(s)

∗ Enter and exit q∗

∗ If M(s) accepts, break.

• While (true):

– Go to any state q such that q 6= q∗

Analysis of P :

• Case 1: 〈M〉 ∈ LEmpty

Then M is a Turing machine and L(M) = ∅.
Then P (〈M〉) never exits the for loop.
Then P (〈M〉) enters q∗ an infinite number of times.

• Case 2: 〈M〉 /∈ LEmpty

Then one of the following cases is true.

– M is not a Turing machine.
Then P (〈M〉) never enters the for loop.
Then P (〈M〉) enters q∗ 0 times.

– M(s) accepts for some s ∈ Σ∗.
Then P (〈M〉) exits the for loop.
Then P (〈M〉) enters q∗ a finite number of times.

In each of these sub-cases, P (〈M〉) does not enter q∗ an infinite number of times.

Therefore P computes LEmpty.

Name: Erynn-Marie Phan

Student ID: 504 757 459

d) (Extra Credit, 40 points) Show that the language

LEQ = {(〈M1〉, 〈M2〉) |M1 and M2 are Turing machines and L(M1) = L(M2)}

is computable by perpetual machines.

Intuition:
We can construct a machine P that on input (〈M1〉, 〈M2〉) simulates M1 and M2 on all input strings
using diagonal scheduling. After a step of M1 and M2, P enters and exits q∗. If M1(s) accepts, P
enters a state which it cannot leave unless M2(s) accepts. Similarly if M2(s) accepts, P should enter
another state and not leave until M1(s) accepts. If either machine accepts a string that the other has
already rejected, or if either machine rejects a string which the other has already accepted, P enters a
rejecting state and remains there forever. Then P enters q∗ an infinite number of times if and only if
L(M1) = L(M2).

Formal Solution:
Construct a perpetual machine P . P has a special state q∗ which it does not enter unless the algorithm
explicitly says that it does. P runs the following algorithm:
- On input (〈M1〉, 〈M2〉)
- If M1 and M2 are both Turing machines, state = continue.
- Else, state = reject.
- Loop: {
• case state == continue

– For all strings s ∈ Σ∗, using diagonal scheduling (continue from where you left off)

∗ Case: M1(s) and M2(s) have both halted. Continue to the next string.

∗ Case: M1(s) has rejected and M2(s) has not halted

· Simulate 1 step of M2(s)

· If M2(s) accepts
- state = reject
- break

· Else, enter and exit q∗ once

∗ Case: M1(s) has not halted and M2(s) has rejected

· Simulate 1 step of M1(s)

· If M1(s) accepts
- state = reject
- break

· Else, enter and exit q∗ once

∗ Case: both M1(s) and M2(s) are running

· Simulate 1 step of M1(s) and M2(s)

· If M1(s) and M2(s) do the same thing, enter and exit q∗ once

· Else if 1 machine rejects and the other continues, enter and exit q∗ once

· Else if M1(s) accepts and M2(s) continues
- state = 1A
- s1 = s
- break

· Else if M2(s) accepts and M1(s) continues
- state = 2A
- s1 = s
- break

Name: Erynn-Marie Phan

Student ID: 504 757 459

• case state == 1A

– Continue simulating M2(s1)

– If it accepts, state = continue

– If it rejects, state = reject

• case state == 2A

– Continue simulating M1(s1)

– If it accepts, state = continue

– If it rejects, state = reject

• case state == reject

– Do nothing.

}

Analysis of P :

• Case: (〈M1〉, 〈M2〉) ∈ LEQ

Then for all strings x ∈ Σ∗, one of the following is true

– x ∈ L(M1) and x ∈ L(M2)

– x /∈ L(M1) and x /∈ L(M2)

• Case: (〈M1〉, 〈M2〉) /∈ LEQ Then for some string x ∈ Σ∗, one of the following is true

– x ∈ L(M1) and x /∈ L(M2)

– x /∈ L(M1) and x ∈ L(M2)

Card Shuffling (60 points)
Let C = (N,R) be a card-shuffling game, described by a natural number N and a set of allowed
card-shuffling rules R. We introduce some notation and define the game below.

• Normal Deck: A deck of N cards labeled (1, 2, 3, ..., N).

• Ace Deck: A normal deck but with the first card replaced by an Ace. In other words, a deck of N
cards labeled (A, 2, 3, ..., N).

• Shuffling Rule: A shuffling rule specifies an allowed shuffle (permutation) of any finite number of
cards. In particular, each rule is a tuple ({A, 1, 2, ..., N}k, {A, 1, 2, ..., N}k), where the left side of
the tuple specifies the card sequence that can be shuffled with this rule, and the right side of the
tuple specifies the new card sequence after the shuffle. For example, ((2, 7, 4, 1), (1, 2, 4, 7)) means
that if we see cards labeled 2, 7, 4, 1 next to each other in this order, then we can shuffle/rearrange
them to be in the new order of 1, 2, 4, 7. R is the set of allowed shuffling rules and is a subset of
the set of all possible shuffles.

• Game Setup: In a row, we place face-up the cards of an Ace deck in order and then place face-up
the cards of a normal deck in order.

• Gameplay: Each turn, we may do one of the following:

– Add a normal deck: Place face-up the cards of a normal deck in order to the right of all cards
currently placed.

– Perform a shuffle: Choose any number of consecutive cards and shuffle them according to some
allowed shuffle rule in R. In other words, choose any number of consecutive cards that are in
the order specified in the left hand side of some rule in R, and then reorder them to be in the
order specified by the right hand side of the same rule.

• Win Condition: You win if you can get a card labeled N into the leftmost card position by playing
this game. You can use as many turns as you want. (See example on next page.)

Let L = {C = (N,R) | It is possible to win game C}. Prove that L is undecidable.
Hint: Consider shuffles of 2N or 3N cards.

You may assume that every TM can be converted into an equivalent TM that will never try to move
left on the leftmost tape position, and if this new TM halts, it always halts when the head is at the
leftmost tape position.

Remember to first write your intuition before writing your formal solution.

Example:
Let C =
{3, {((A, 2, 3, 1, 2, 3), (A, 2, 3, 2, 1, 3)), ((2, 1, 3, 1, 2, 3), (3, 2, 1, 3, 2, 1)), ((A, 2, 3, 3, 2, 1), (3, 2, 1, 3, 2, A))}.
Then, you can win game C after four turns.

Name: Erynn-Marie Phan

Student ID: 504 757 459

Intuition:

• Let each normal deck represent a tape character.

• Different permutations of the normal deck can represent different tape characters.

• Let the ace deck represent the state.

• Different permutations of the ace deck represent different states

• The position of the ace deck in the entire game is the head position.

• To write and move the head Right, use a shuffle with 2N cards.

• To write and move the head Left, use a shuffle with 3N cards.

• The normal deck in order is the blank character.

• Add normal decks whenever the machine sees a blank and moves the head right.

• The ace deck in order is the start state.

• All halting states have the Nth card in the 1st position.

• The start of the game is the initial configuration of a Turing machine on input ε.

• Then deciding that the game can be solved is the same as deciding that the Turing machine halts
on input ε.

Formal Solution:
We can define the following procedure to convert a Turing machine M into an instance C = (N,R) of
the card-shuffling game, in such a way that M(ε) halts if and only if C ∈ L.

TM − to− C(〈M〉):
• Let Qtot be the set of M ’s states

• Let H = {h1, h2, . . . } be the set of M ’s halting states

• Define Q = Qtot \H = {qs, q2, q3, . . . }
• Let Γ = {t, a2, a3, . . . } be M ’s tape alphabet

• Let δ be M ’s transition function

• Let N = max(|Q|+ 1, |H|+ 1, |Γ|+ 1)

• Let the following sequences of N cards correspond to states in Q

– (A, 2, 3, . . . N) represents qs, the start state

– (2, A, 3, 4, . . . N) represents q2

– (i, A, . . . i− 1, i+ 1 . . . N) represents qi for all qi ∈ Q such that i > 2

• Let the following sequences of N cards correspond to states in H

– (N, 1, 2, . . . N − 1) represents h1

– (N, 2, 1, 3, 4, . . . N − 1) represents h2

– (N, i, 1, . . . i− 1, i+ 1, . . . N − 1) represents hi for all hi ∈ H such that i > 2

• Let the following sequences of N cards correspond to characters in Γ

– (1, 2, 3, . . . N) represents t
– (2, 1, 3, . . . , N) represents a2

– (i, 1, . . . i− 1, i+ 1 . . . N) represents ai for all ai ∈ Γ such that i > 2

Name: Erynn-Marie Phan

Student ID: 504 757 459

• Let the rules of R be defined as follows

– For every transition δ(q, a) = (q′, a′, Right) where q ∈ Q, q′ ∈ Qtot, a, a
′ ∈ Γ

∗ Let Sq be the sequence of N cards that represents q

∗ Let Sa be the sequence of N cards that represents a

∗ Let Sq′ be the sequence of N cards that represents q′

∗ Let Sa′ be the sequence of N cards that represents a′

∗ Add the rule ((SqSa), (Sa′Sq′)) to R

– For every transition δ(q, a) = (q′, a′, Left) where q ∈ Q, q′ ∈ Qtot, a, a
′ ∈ Γ

∗ Let Sq, Sa, Sq′ , and Sa′ be defined as in the previous case

∗ For every character b ∈ Γ let Sb be the card sequence that represents b

∗ For every possible Sb, add the rule ((SbSqSa), (Sq′SbSa′)) to R

Analysis of TM − to− C:

• Concerning the way card sequences are assigned:

– Let Sqs be the sequence of N cards that represents the start state

– Let St be the sequence of N cards that represents t.

– Then the starting configuration of the game is SqsSt. This corresponds to M being in its start
state, with the head pointing to the first tape position, when the input is ε.

• Concerning the rules:

– All sequences Sq have the Nth card in the Nth position and exactly one instance of the card A.

– All sequences Sa have the Nth card in the Nth position and exactly one instance of the card 1.

– Because of these constraints, it is not possible to apply a rule of the first form (corresponding
to a Right transition) to a sequence of 2N cards which does not represent a state and a tape
character, in that order.

– Additionally, all sequences Sb have the Nth card in the Nth position and exactly one instance
of the card 1.

– Because of these constraints, it is not possible to apply a rule of the second form
(corresponding to a Left transition) to a sequence of 3N cards which does not represent a
tape character, a state, and a tape character, in that order.

• Furthermore, because the starting configuration of the game corresponds to the starting
configuration of M and all rules in R correspond to valid transitions of M , all valid configurations
of C correspond to valid configurations of M .

• Because all Turing machines can be converted into equivalent machines which never attempt to
move Left from the first tape position, all Turing Machines can be converted into instances of the
card-shuffling game with this procedure.

• The only allowed card sequences which have N in the first position are the ones which correspond
to halting states. Therefore the only way to get an N card in the first position on the board is to
have M reach a halting state with the head at the first position on the tape.

• Because all Turing machines can be converted into equivalent machines which only halt with the
head at the first tape position, determining whether there is a solution to the card-shuffling game
is equivalent to determining whether an arbitrary Turing machine M halts on input ε.

Name: Erynn-Marie Phan

Student ID: 504 757 459

Claim: L is undecidable.
Proof:
Suppose there exists a decider D for L. Construct a new machine N that runs the following algorithm:

• On input 〈M〉, M is a Turing machine that never attempts to move left off the tape and only halts
with its head at the first tape position.

• (N,R) = TM − to− C(〈M〉)
• Run D((N,R))

– If it accepts, accept.

– If it rejects, reject.

Then N is a decider for LHaltε

⇒⇐

