Name:

student 11: [

CS181 Winter 2017 - Final
Due Friday, March 17, 11:55 PM

e This exam is open-book and open-notes, but any materials not used in this course are prohibited,
including any material found on the internet. Collaboration is prohibited. Please avoid temptation
by not working on the final while you are in the presence of any other student who has taken or is
currently taking CS181. Be extra careful if you live with or meet regularly with a student of
this class. If you have any questions about the exam, ask the TA or Professor Sahai by email or after
class. Do not ask other students. You are allowed to use any theorem shown in class or in the
textbook, as long as you clearly cite it. Please monitor Piazza for any clarifications. Do not post any
questions on piazza.

e We suggest that you spend approximately 12 hours (not necessarily contiguous) to take this exam. Start
early so that you have time to understand and think about the problems. The solutions must be
submitted on CCLE by 7 PM on Friday, March 17.

e Place your name and UID on every page of your solutions. Retain this cover sheet and the next sheet
with the table as the first pages of your solutions. Please use separate pages for each question.
All problems require clear and well-written explanations.

e There are 5 questions and a total of 230 points and an extra credit question worth 50 points.

e For each part (except for the extra credit), if you describe a non-trivial approach that you tried using to
solve the problem but realized it doesn’t work and explain correctly why it doesn’t work and then write
“T don’t know” you will get 20% points for that problem. You will not get 20% points for just writing
“I don’t know”. Whether your stated approach was indeed non-trivial is solely at the discretion of the
grader.

Please handwrite the following honor code agreement and sign and date in the spaces provided.

Honor Code Agreement: I promise and pledge my honor that during the exam period, I did not and
will not talk to any person about CS 181 material except for the professor or the TA, nor will I refer to any
material except for the class textbook and my own class notes. I will abide by the CS181 Honor Code.

Signature:

Date:

Vishesh Sharma

Vishesh Sharma

Question Points

1

EC

Total

1. Pushdown Automata (20 points)
(a) (20 points) Let L and Ly be languages. We define the operation
LioLy={zy |z € L1,y € Ly, and |z| =2|y|}.

Prove that the set of context-free languages is not closed under the ¢-operation. I.e. find two context-
free languages L1 and Lo such that L; ¢ Ls is not context-free.

Solution:
Let L; = {0"1" | n > 1}
and let Lo = {2" | n > 1}

Now, Ly o Ly = {0"1"2" | n > 1}

Now, it was shown in class that L; is context-free. Furthermore, Lo is trivially context free since it
can be trivially simulated using a DFA and all regular languages are context free.

Finally, as shown in class, the langauge Lj © Ly = {0"1"2" | n > 1} is not context free. Hence, the
set of context-free languages is not closed under ¢ operation.

2. Oracle Building Turing Machines (45 points)
In this problem, we define a Turing machine variant called an Oracle Building Turing Machine (OBTM).
An Oracle Building Turing Machine has a total of three tapes: in addition to its regular tape, it has
a machine tape and an input tape. The OBTM can write to the three tapes in the ordinary way, but
it has an extra trick up its sleeve. At any given moment, the OBTM can go into a special query state
and perform an oracle query. Suppose an ordinary Turing Machine representation (M) is stored on the
machine tape of an OBTM T and the input tape of T' contains the string w. If T" enters the query state,
then immediately T" learns whether w € L(M) or w ¢ L(M) (even if M does not halt on w, T" will get
to know that w ¢ L(M)). In particular, if w € L(M), then the first cell of the input tape is set to 1,
and if w ¢ L(M) then the first cell of the input tape is set to 0. We say that a language L C ¥* is
oracle recognizable (respectively, oracle decidable) if there exists an oracle building Turing machine T
recognizing (respectively, deciding) L.
Note: Throughout this problem, (M) denotes a description of an ordinary Turing machine.
Example: An oracle building Turing machine can decide the language TM = {((M), z) | M (z) accepts}.
Specify the OBTM O as follows. On input ((M),x), O writes (M) to the machine tape and z to the
input tape. Then O enters the query state and retrieves whether x € L(M) or x ¢ L(M). In the first
case, O accepts and in the second case, O rejects. Since the query is immediate, O always terminates and
thus is an oracle decider for TM.

(a) (10 points). Show that the language

HALT = {((M),z) | M halts on input =}

is oracle decidable.

(b) (15 points). Show that the language
NEQ = {((M1), (M2)) | L(M) # L(Ma)}

is oracle recognizable.

(c) (20 points). Show that there exists a language L which is not oracle recognizable.
Hint: Think about infinities.

Solution:
(a) Specify the OBTM O as follows:

On input ((M),z), O writes < M > to the machine tape and z to the input tape. Then O
enters the query state and retrieves whether z € L(M) or « ¢ L(M). This result (available on the first
cell of the input tape) is stored on O’s main tape. Next, O interchanges the accepting states and rejecting
states in < M > to give < M’ >. Note that M’ rejects when M accepts and M’ accepts when M rejects.
Next, O places < M’ > on the machine tape and z on the input tape. Then O enters the query state and
retrieves whether x € L(M') or x ¢ L(M'). This result is again stored. Finally, O accepts if the results
of the two query states are different (i.e. 01 or 10), and rejects if they are the same (i.e. 00).

Analysis:

When the query state of O returns a 1, x € L(M) and M accepts (halts). When the query state of O
returns a 0, z ¢ L(M) and either M rejects (halts) or loops. Consider the following cases:

1. If O returns 1 on querying < M >, querying on < M’ > cannot return a 1 since when M accepts, M’
rejects and vice-versa.

2. If O returns 1 on querying < M >, and 0 on querying < M’ >. M halts on z since an accepting state
is reached by M.

3. If O returns 0 on querying < M >, and 1 on querying < M’ >. M halts on z since a rejecting state is
reached by M since M’ reached an accepting state.

4. If O returns 0 on querying < M >, and 0 on querying < M’ >. M loops on x since neither machine
reached an accepting state and both of them cannot simultaneously be in a rejecting state for the same

input . Thus, both of them must loop on input x

(b) Specify the OBTM O as follows:

On input ((My), (Ma)), O starts an enumerator E that generates all strings in ¥*. For each
string x generated by the E, O writes < M; > to the machine tape and x to the input tape. Then O
enters the query state and retrieves whether x € L(M;) or « ¢ L(M;). This result (available on the first
cell of the input tape) is stored on O’s main tape. Then, O writes < My > to the machine tape and = to
the input tape and O enters the query state and retrieves whether z € L(Ma) or x ¢ L(Ms). This result
is again stored. Finally, O accepts if the results of the two query states are different (i.e. 01 or 10), and
continues otherwise.

Analysis:

If L(M1) # L(M3), there must be some x generated by the enumerator E so that x is accepted by only
one of the machines (and rejected or looped on by the other). This corresponds to the case when the
query results are different (i.e. 10 or 01). In such a case, the machine accepts. Since, O will eventually
accept (and halt) if (< My >, < My >) € NEQ, and loop otherwise, N EQ is oracle-recognizable.

(c) Consider the language FQ = {((My),(Ma)) | L(M;) = L(Ma2)}. Now, intuitively to recognize this
language, the Oracle Turing Machine must check Yz € ¥* and ensure that Vo € L(M;),z € L(Ms) and
also Vo ¢ L(My),x ¢ L(Ms). Now, this problem will never accept since the machine will run forever
going through all the strings in X*.

Proof by contradiction:
Assume for contradiction that EQ is oracle recognizable and 3R which is a recognizer for the EQ.

Build M(y):
Let x =< M >
ACCEPT if y = 071"
Let N be a TM s.t. L(N)={0"1"|n > 1}
Run R(z,< N >):

ACCEPT:
ACCEPT y =0
REJECT:
REJECT all y
LOOP:

Analysis:

If R ACCEPTS, this implies that R believes that L(M) = L(N). However, L(M) =0U {0"1" | n > 1}
and L(N) = {0"1™ | n > 1}. This is a contradiction.

If R REJECTS, this implies that R believes that L(M) # L(N). However, L(M) = {0"1" | n > 1} and
L(N)={0"1" | n > 1}. This is a contradiction.

If R LOOPS, this implies that R believes that L(M) # L(N). However, L(M) = {0"1" | n > 1} and
L(N)={0"1" | n > 1}. This is a contradiction.

Hence, a contradiction is reached in each case. Thus, FQ is not oracle-recognizable.

3. Undecidability and Unrecognizability (65 points) Throughout this problem, we let ¥ = {0,1} and
define a distance between words as follows. If x,y € ¥* are words of equal length, |x| = |y|, then we define
the distance between z and y, written ||z — y||, to be the number of bits of x and y that are different.
Define the language

CLOSEBY = {((M), (M>)) | Vo € L(M;) Iy € L(Ms): ||z —y|| < 1}.

(a) (15 points). Show that the language CLOSEBY is not decidable.
(b) (20 points). Show that the language CLOSEBY is not Turing recognizable.
(¢) (30 points). Show that the language

_ . M(x) and N(z) halt and
LEQ-HALT = {(<M>7 <N>) ’ Vz € X M (z) halts in fewer steps than N(:c)}
is unrecognizable. In solving this problem you may assume for simplicity that any Turing machine can
obtain its own description in 0 steps and that any loading of data into memory (i.e. loading constant
values of the Turing Machine’s pseudocode) also takes 0 steps.

Solution:
(a) Assume for contradiction that CLOSEBY is decidable and 3D, a decider for CLOSEBY .
Build M(y):
Let x =< M >
ACCEPT if y =0""n > 1
Let N bea TM s.t. L(N)={0"|n > 1}
Run D(z,< N >):
ACCEPT:
ACCEPT y =11
REJECT:
REJECT all y

Analysis:

1. If D ACCEPTS, this implies that D believes that (< M >, < N >) € CLOSEBY. However,
L(M)={11} U{0™ | n > 1} and L(N) = {0™ | n > 1}. Thus, for the string 11 in L(M), the only string
of equal length in L(N) is 00. Clearly, ||[11 — 00|| = 2. Thus, (< M >,< N >) ¢ CLOSEBY. This is a
contradiction.

2. If D REJECTS, this implies that D believes that (< M >,< N >) ¢ CLOSEBY. However,
L(M) ={0" | n > 1} and L(N) = {0" | n > 1}. Thus, Vo € L(M)3y € L(N) s.t. y = z. Thus,
||z —y|| = 0. Thus, (< M >, < N >) € CLOSEBY . This is a contradiction.

Hence, a contradiction is reached in each case. Thus, CLOSFEBY is not decidable.

(b) Assume for contradiction that CLOSEBY is recognizable and 3R, a recognizer for CLOSEBY .
Build M(y):
Let z =< M >
ACCEPT if y = 0"Vn > 1
Let N bea TM s.t. L(N)={0"|n>1}
Run D(z,< N >):
ACCEPT:
ACCEPT y = 11
REJECT:
REJECT all y
LOOP:

Analysis:

1. If R ACCEPTS, this implies that R believes that (< M >, < N >) € CLOSEBY. However,
L(M)={11} U{0™ | n > 1} and L(N) = {0™ | n > 1}. Thus, for the string 11 in L(M), the only string
of equal length in L(N) is 00. Clearly, ||11 — 00|| = 2. Thus, (< M >, < N >) ¢ CLOSEBY . This is a
contradiction.

2. If R REJECTS, this implies that R believes that (< M >,< N >) ¢ CLOSEBY. However,
L(M) ={0" | n > 1} and L(N) = {0" | n > 1}. Thus, Vo € L(M)3y € L(N) s.t. y = z. Thus,
||z —y|| = 0. Thus, (< M >, < N >) € CLOSEBY. This is a contradiction.

3. If R LOOPS, this implies that R believes that (< M >,< N >) ¢ CLOSEBY. However,
L(M) ={0" | n > 1} and L(N) = {0" | n > 1}. Thus, Vo € L(M)3y € L(N) s.t. y = x and
||z —y|| = 0. Thus, (< M >, < N >) € CLOSEBY. This is a contradiction.

Hence, a contradiction is reached in each case. Thus, CLOSFEBY is not recognizable.

(c) Assume for contradiction that LEQ) — HALT is recognizable and 3R, a recognizer for LEQ — HALT.
Build M(y):
Let v =< M >
Let N(z) be a TM that counts upto 100|z| before accepting
Run R(x,< N >) for |y|steps:
R ACCEPTS:
LOOP
R REJECTS:
ACCEPT all y
R did not halt:
ACCEPT all y

Analysis:

1. If R ACCEPTS, this implies that R believes that (< M >, < N >) € LEQ — HALT. However, M
LOOPS by design. Thus, (< M >, < N >) ¢ LEQ — HALT. This is a contradiction.

2. If R REJECTS, this implies that R believes that (< M >, < N >) ¢ LEQ—HALT. However, M halts
immediately in fewer than |y| steps while N halts in 100|y| steps. Thus, (< M >, < N >) € LEQ—HALT.
This is a contradiction.

3. If R does not halt, this implies that R believes that (< M >, < N >) ¢ LEQ — HALT. However, M
halts immediately in |y| steps while N halts in 100|y| steps. Thus, (< M >,< N >) € LEQ — HALT.
This is a contradiction.

Hence, a contradiction is reached in each case. Thus, LEQ — HALT is not recognizable.

4. Alice in Turing Land (45 points)

Alice is visiting her uncle over the weekend and by accident discovers a wondrous room. The room
contains infinitely many light bulbs in a (long) row labelled in order with the numbers 1,2,.... The room
is dimly lit since only the first two light bulbs are turned on, and the rest are all turned off. Consequently,
Alice does not see the Math Hatter. He suddenly jumps out from the semidarkness and shuts the door.
“I have a riddle for you,” he says with glee. “You shall only escape this room if you manage to make it
so that only the first light bulb is on.” Alice says, “Okay, I'll just turn off the second light bulb.” The
Math Hatter chuckles: “Oh, but were it only that easy! The lights can only be manipulated according to
rules of my making.” He specifies the following:

(i) A window size in the form of an integer M € N.

(ii) A set of substitution rules R. Each rule r € R is specified by an integer n (note that two rules of R
can have different values for n) and a mapping of n light bulbs in states (b1,...,b,) € {ON, OFF}™
to the states (c1,...,¢,) € {ON,OFF}"™. Ie. given n light bulbs in a row, Alice can change them
according to the rule

(b1,...,bp) — (c1,...,Cn).

Note that any such change much be applied to all these light bulbs simultaneously.

(iii) A rule with value n may only applied to a consecutive sequence of light bulbs that are labeled by
k+1,k+2,...,k+n, where k is a multiple of M. For example, if a rule has n = 3 and M = 10,
then it can be applied to the light bulbs labeled (11,12, 13), but not the light bulbs labeled (4,5, 6),
since 4 — 1 = 3 is not a multiple of M = 10.

We call a pair (M, R) as specified above Alice-Escapable if it is possible to start with only the first two
light bulbs on and, by repeated substitution according to rules in R and the conditions above, reach a
state where only the first light bulb is on.

Example: Say that the Math Hatter specifies M = 2 and three substitution rules

n1 = 4 and (ON, ON, OFF, OFF) — (ON, ON, ON, OFF) (1)
ny = 2 and (ON, OFF) — (ON, ON) (2)
n3 = 4 and (ON, ON, ON, ON) — (ON, OFF, OFF, OFF). (3)

Then Alice can achieve that only the first light bulb is on by applying the rules as follows. Let the row
of light bulbs initially be

ON, ON, OFF, OFF, OFF, ...
Then first using rule (1) to the first four lights, Alice gets
ON, ON, OFF, OFF,OFF,--- +— ON,ON, ON, OFF,OFF, ...
Then using rule (2), she gets
ON, ON, ON, OFF,OFF, - - - — ON, ON, ON, ON,OFF, .. .,
Finally, she uses rule (3) to escape with

Note that there is no shorter solution to this example, because the rules have to be applied according to
condition (iii) above. End of Example. You may not assume that this example is the actual (M, R)
given by the Math Hatter.

(a) (45 points). Show that the language
ALICE = {(M, R) | (M, R) is Alice-Escapable}
is undecidable.

Solution:

(a) Intuition: Let ONbe 1 and OFFbe 0. Suppose we are given M € N, then each cell on the tape will
contain a string of length M consisting of 0’s and 1’s which denotes the condition of the light-bulbs.
Each cell also keeps track of the state of the machine (i.e. the state is encoded in the tape), and the
head position. When a substitution is performed, the entire string of length M is substituted. If the
substitution had length n < M, the substitution just changes the bits corresponding to the substitution
and copies over the rest of the bits. In this way, the substitution will always occur starting at k s.t. k is
a multiple of M.

Consider the following tape alphabet T':

T = {$}U(r x (Q x {#))

where @ is the set of states, 7 are the set of n length binary strings, $ denotes the start of the tape, and #
denotes that the head is not at this position. For simplicity, # will not be shown in diagrams. Note that
the set of binary strings contains 2" strings corresponding to each configuration of 0’s and 1’s possible in
a string of length n.

Now, consider the following rules:
rule for the starting state:

| | do \
| $ | 1100.. |

rule for starting state for positions that don’t have the head:

| #
| 0000.. |

rule for shifting right:

| q | # | | # | q’ |
| a | b | —-> a’ | b |

rule for shifting left :

| # \ q | | q \ #
| a | b | —> | a \ b’ |

rule for copying cells that don’r have the head:
| # o => # |

| a | | a |

Proof by contradiction:
Assume for contradiction that ALICE is decidable and let D be a decider for ALICE.

Build M(y):
Let x =< M >
convert = to a = (M, R)
Run D(a):
D ACCEPTS:
HALT

D REJECTS:
Change first cell using the rule 1100...— > 1000...

Analysis:

1. If D ACCEPTS, this implies that D believes that (M, R) is Alice-escapable. However, M HALTS by design.
Thus, (M, R) ¢ ALICE. This is a contradiction.

2. If D REJECTS, this implies that D believes that (M, R) ¢ ALICE. However, M immediately changed the
first cell to 10000... and Alice can escape. Thus, (M, R) € ALICE. This is a contradiction.

The Infinite Weaver (55 points + 50 Extra Credit)

In Infinite Land, every day consists of one minute for every positive integer. So, a clock in Infinite Land does
not have minutes 1 to 60 and hours 1 to 24, but instead just minutes 1,2, In Infinite Land lives the Infinite
Weaver. Every minute, the Infinite Weaver weaves a carpet of any size (even infinite) that can fit on the upper
right quadrant of R?. Any carpet has a pattern consisting of a coloring of the unit squares of the carpet.

Now, the Infinite Customer enters the story. She has heard of the Infinite Weaver’s wonderful carpets, and
to decorate her Infinite House, she needs infinitely many carpets. She first goes to the weaver and orders all
possible carpets of width 1, of finite length, and with every possible pattern containing the colors red and blue.
In other words, for every n € N the order contains all carpets in red and blue of size 1 X n.

(a) (10 points). Show that the Infinite Weaver can deliver the order in one (infinite) day.

Seeing as the Infinite Weaver so easily completed her first order, the Infinite Customer gets curious. How much
can the weaver actually hope to deliver? Now, she asks the weaver to weave every possible carpet of finite
width w € N, of finite length n € N, and with every possible pattern of red and blue colors.

(b) (10 points). Show that the Infinite Weaver can still deliver the order in one (infinite) day.

The Infinite Customer decides that she likes other colors besides blue and red. She creates infinitely many
colors {¢;}ien. She requests that the Infinite Weaver produce every possible carpet of width 1, of finite length
n € N, and with every possible sequence of n colors among the colors {¢; }ien.

(c) (20 points). Show that once again the Infinite Weaver can deliver the order in one (infinite) day.

The Infinite Weaver, enjoying her successful business, hires infinitely many weavers {W; };en. Each employee
W; has the same capabilities as the Infinite Weaver.

(d) (15 points). Show that, in fact, every order that the Infinite Weaver can fulfill in one day with the help
of her infinite employees, she could have also fulfilled on her own in one day.

Solution:
(a) Let 1 and 0 represent the colors blue and red, respectively. Now, a carpet of size 1 x n can be represented
as a binary string of length n. Let this binary representation be called B.

Now, consider the following mapping function that maps a given representation B to a natural number k:
2281 — 1)+ B+ 1=k
Here B’s value in decimal representation is being added.

Now, every string B of length n can have 2" different combinations. Thus, to give each carpet a unique
number, all the previous carpets (carpets of smaller size) must be given a number first. Number of carpets (i.e.
natural numbers) already taken for size | B| —1 = 2(2/81=1 —1) using the geometric sequence summation formula.
Hence, now the numbers available for size |B| are 2(2/51=1 — 1) + 1, 2(2/B1-1 —1) 42, 2(2!BI-1 —1) +3.... In
this way, each carpet can be given a unique natural number such that all natural numbers are used in sequence.
Hence, the sizes of the sets of one (Infinite) day and the total number of 1 x n carpets is the same and the
Weaver can make the delivery.

(b) Consider the following scheme of numbering the carpets:

Start with a square of dimensions 1 x 1 in the upper-right quadrant of R? such that the sqaure touches the
x-axis and the y-axis and has one vertex at Origin, enumerate all the carpets (including a different carpet for
different configurations of 1’s and 0’s) that are present in this square and give them the next available natural
number (the first number assigned is 1). Next, move to a square of dimensions 2 x 2 and repeat the process;
however, this time exclude the carpets already enumerated by the smaller square. Continue for larger and
larger squares each time incrementing the side of the square by 1. Note that the number of squares numbered
for each square area is finite.

Now, if the above scheme is followed, each every possible carpet of dimensions m x n s.t. m > n will be
reached and enumerated when we reach the square with side m. Hence, each carpet can be mapped to a
natural number (a minute). Thus, the Weaver can make a delivery in one (Infinite) day.

(c¢) Intuition: Since there are an infinite number of colors, even a 1 x 1 carpet has infinite permutations
each corresponding to a different color. Thus, if we start enumerating just 1 x 1 carpets, we will never get
to higher carpets. Hence, an approach that repeatedly moves to bigger carpets but revisits smaller carpets is
required.

Consider the following visual representation of the problem:

Let the carpet of length i be represented along the y-axis starting at x = i. Thus, starting at the coordinates
(1,0), there is a carpet extending to (i,i) in the xy-plane. Let the carpets of all lengths i € N be represented
similarly. Hence, when the xy-plane is viewed from above, we will see columns of increasing height as we move
towards the right (positive x-axis).

Now, represent the infinite number of color combinations on the z-axis.

AN ASIDE THAT IS NECESSARY

Claim: Infinite color combinations for a carpet of dimensions 1 X n can be represented along a single axis. In
other words, all the combinations are countably infinite.

Proof: Consider the trivial case of carpet of dimensions 1 x 1. Here the color combinations are just the set of
infinite colors C;. Hence, they have a direct mapping C; to i.

Next, consider the case of carpets of dimension 1 x 2. Here, the color combinations are the set C; x C;. Rep-
resent C; along x-axis and C; along the y-axis. Draw diagonal lines of slope -1 cutting the plane starting at
y-intercept of 2, then 3, then 4, and so on and number the points in the plane encountered. In this way, the
point with coordinates (m,n) which lies on the line y = —x + (m + n) will be reached when the line with
y-intercept m + n is reached. Hence, this set is also countably infinite.

For higher dimension cases, the case of C; x C; x C} can be represented in the xyz-space and all points can be
reached by a cube (with one vertex on the Origin, and three sides along the x-axis, the y-axis, and the z-axis)
of increasing length of each side. Similarly, the 4D case can be solved using enumeration along a hypercube
and so on.

END OF ASIDE

Now, we have the carpets along the x-axis (with their lengths along the y-axis) and the color combinations
along the z-axis. Consider the view of the xz-plane with the positive y-axis going into the plane (away from the
viewer). Any point (a,b) in this plane (the xz-plane) can be reached by drawing a diagonal line of the form:
z = —x+ (a+b) following the same argument as presented above in AN ASIDE THAT IS NECESSARY. Thus,
we have shown that any carpet of length b and a color combination a can be reached and numbered using a
natural number. Thus, the Weaver can make the delivery.

(d) Consider the following visual representation for the problem:

Let the employees W; be represented on the x-axis with employee W; at position x = ¢. Let the work of an
employee be represented on the y-axis with the j'th carpet at position y = j. Thus, each carpet j made by
the employee W; is represented at the coordinates (i, 7). Now, since there are infinite employees and an infinite
number of carpets for each employee, this representation covers the entire upper-right quadrant of R2.

Now, if we can show that the Infinite Weaver can enumerate all these carpets (the upper-right quadrant
of R?), then we would have shown that the Infinite Weaver can make these on her own since we will find a 1:1

mapping for each carpet to a minute.

Consider the following numbering scheme:

1. Start the numbering from 1 and number the carpet at (1,1).
2. Next, number (1,2) and (2,1).

3. Next, number (1,3), (2,2), and (3,1).

4. Continue in the same pattern.

This numbering scheme essentially numbers the quadrant along diagonal lines cutting the plane starting from
a point on the y-axis down to a point on the x-axis such that the points have the same value (i.e. the slope of
the line is -1).

Claim: This numbering scheme reaches all the points in the upper-right quadrant of R2.

Proof: Consider an arbitrary point with the coordinates (m,n). Now, this point lies on the line y =
—z + (m + n), which is a line with slope -1 and y-intercept m + n. Thus, this point will be enumerated
by the diagonal drawn starting at y = m + n, which will be reached at step number m + n — 1 as per the
numbering scheme described above. Thus, eventually every point will be numbered.

Hence, the Infinite Weaver can fulfil every order on her own in a day that she can fulfil in a day with all
her employees combined.

EXTRA CREDIT
Assume for contradiction that the Infinite Weaver can produce every infinite carpet, each the size of upper
right-quadrant of Re and each with infinite colors.

Let the i'th carpet produced by the Infinite Weaver be represented by Carp;. Now, consider the carpet
constructed by the following steps:

For each carpet Carp;, copy the entire i'th row but change the unit square at the position (7,7) to any other
arbitrary color different from the present color. Thus, row 1 of the new carpet is identical to that of Carpy but
different at position 1 (i.e. (1,1) in the new carpet). Row 2 of the carpet is identical to row 2 of Carpy but
different at position 2 (i.e. (2,2) in the new carpet). Hence, the new carpet is different from the #'th carpet at
position (i,1).

Hence, our new carpet could not have been one of those produced by the Weaver. This is a contradiction.

Thus, the Weaver cannot produce every infinite carpet the size of the upper-right quadrant of R? with in-
finite colors.

