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Each probiem has 20 points.
All algorithm should be described in English, bullet-by-bullet

3 a . Describe Depth First Search on an undirected and un-connected graph.
b. Analyze the time complexity of DFS when there are no cycles.
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2.a. Use Prim’s MST algorithm to find an MST in this graph. Show each step on the

graph shown below.
b. If some edges were negative would the algorithm still find an MST. Why?
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3. Prove that solving the k-clustering problem (described in class and in the book)
using Kruskal’s MST algorithm, produces an optimal clustering. That is, it will
produce an optimal set of clusters C1, C2, ..., Ck with Maximum cluster distances.
(Use a figure to better describe your proof: as was done in class / book).
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4. Consider a sequence of n real numbers X = (x1,x2, ..., xn).
a. Design an algortihm to partition the numbers into n/2 pairs. We call the sum of each
pair S1,S2, ..., Sn/2. The algorithm should find the partitioning that minimizes the

maximum_sum.

b. Analyze the time comflexity of your algorithm.
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5.Let G be a DAG and let K be the max@umber of edges in a path in G.

a. Design an algorithm that divides the vertices into at most k+1 groups such that for each
two vertices v and w in the same group there is no path from v to w and there is no path

from w to v.
_ b. Analyze the time complexity of your algorithm.
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