1 Problem

The answers to the following should fit in the white space below the question.

1. Write down Kruskal’s algorithm. It is sufficient to write down the main while loop and the
rule describing how the algorithm proceeds. [1 point]

ot T-g PeC

:
¢
/

i (RS 1
[PR Wmwpeg] SRR

3 i A
2. State the cut property we used in clabs to an lyze Kruskal’s and Prim’s algorithms. [1 point]

e .
the et

3. Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G,
with edge costs that are all positive and distinct. Let T be a minimum spanning tree for this
instance. Now suppose we replace each edge cost ¢, by its square, ¢, thereby creating a new

instance of the problem with the same graph but different costs.

True or false: 7 must still be a minimum spanning tree for this new instance. [1 point]

ot

. Consider the weighted interval scheduling problem where we are given n jobs as input with the

2’th job having start time s;, finish time f;, and value v;. (Thus, the input to the problem is
n triples (s1, f1,v1), ..., (Sn, fn, vn).) Recall that our goal is to find the set of non-conflicting
jobs with the highest possible total value. Consider the following greedy algorithm for the
question:
(a) Set A=0, R=1{1,2,...,n}.
(b) While R # 0:
i. Pick job 7 € R with highest v;/f; (value to finish time ratio) and add ¢ to A.
ii. Remove ¢ and all jobs that conflict with ¢ from R.

(¢) Return A.

—

True or false: A achieves the

-

1ighest possible total value. If true, provide a brief explanation.
If false, provide a counterexample. [2 points]

e [\ vy -
Gy (o, 0,8 + =5

. You have n items with the ¢’th item having weight w;. You also have a knapsack with total

weight capacity W (i.e., it can safely hold items whose total weight is at most W). Describe
an algorithm for picking a largest possible subset of items that can be placed safely in the
knapsack. That is, describe an algorithm to find a subset S C {1,2,...,n} of maximum
possible size such that) . cw; < W. For full-credit, your algorithm should run in time
O(nlogn). You don’t have to prove correctness or analyze the time complexity of the algoritm.

[2 points]

[Hint: One approach is to give a greedy algorithm.]

2 Problem

Suppose you have a weighted undirected graph G = (V, E') where all the weights are distinct. Prove
that if an edge e is part of a cycle C and has weight more than every other edge in the cycle, then

e cannot be part of the minimum spanning tree in G. [3 points]
[Hint: Assume that the statement is false for the sake of contradiction and let 7" being a MST

that contains the edge e. Arrive at a contradiction by a swapping argument as we did in class for
proving the cut property.]

3 Problem

Give a dynamic programming algorithm for the following version of knapsack where you have three
copies of each item. There are n types of items with weights wy, ..., _wy, respectively and value
v1, ..., v, respectively and you have three copies of each item. Suppose you have a knapsack of
total Wexgnt capacity W. We a Say?@nﬁgurauon (ar,...,an) is safe if 0 < a; < 3 and aywy +
aswa+ ... +apwy, < W (ie., it is safe to pack a; copies of item 1, as copies of item 2, ..., an copies
of item n into the knapsack). The value of a configuration is the total value of the items in the
configuration: for a configuration (ai,...,an), its value is via; + vaaz + - + Unan.

Give an algorithm which given the numbers wi,..., wy, v1,...,vn, W as input computes the
max1murgwy3£9e achievable over all safe configurations. For full-credit it is sufficient to give a correct

a]gorithm for the problem which runs in time O(nW) and it is not required to prove correctness or
analyze the time-complexity of the algorithm. You must provide full description of the algorithm.

[4 points]

4 Problem

You are given two arrays of integers X = [z[0], z[1],...,z[m]] and Y = [y[0], y[1], ..., y[n]] as input.
For two subsequences of X, Y of the same length, i.e., sequences of indices 0 < iy <ig < ... <Tij <

k

1
> 1+ |xlie] — yliell

=1

Give an algorithm that given X, Y as input computes the maximum possible value achievable over
all subsequences. For full-credit, your algorithm should run in time O(mn) (ignoring the cost
of arithmetic, i.e., adding numbers). You don’t have to prove correctness or analyze the time-
complexity of the algorithm. [4 points]

Example: X = [1,4,2,5], Y = [1,2,10,4,100]. Here, if you look at subsequences z[0], z[2], 2[3]
and y[0], y[1], y[3] you get value 1/1+1/1+1/2 = 2.5. Whereas, if look at subsequences z[0], z[1], z[2], z[3]
and y[0], y[1], y[2], ¥[3], you get value 1/1 +1/3+1/9+1/2 ~ 1.9444. So the first subsequence has
better value. Your goal is to find the best possible value achievable over all subsequences.

[Hint: Create subproblems like we did for edit-distance in class and develop the appropriate

recurrence. |

L4

it

[,
R

12

5 Problem

Consider the following variant of the RNA sequencing question. Given a sequence X = (z1,...,Zn),
a set of pairs M = {(i1,71), (ia,52)s - - (im, Jm)} is an allowed set of pairs if the following hold:

1. Each index appears in at most one pair in M (i.e., no repetitions).

2.

Each pair is one of {G,C} or {A,U}. That is, for all 1 < p <m, {zy,,z;,} is one of {G,C}
or {A, U}

3. No sharp edges: For all pairs (i,j) € M, i < j— 4.

4. No crossing edges: If pairs (4, j), (k,£) € M, then we cannot have 1 < k < j < L.

(These are the same rules as we worked with in class.)
The stability of an allowed set of pairs M is given by the following formula:

m
stability(M) =Y " (jy — ip)°.
p==1

That is, the stability of the collection of pairs is the sum of squares of the number of characters

hetween each pair. Give an efficient algorithm that given a sequence X = (11,.

.., Zn) computes
the maximum possible stability(M) over all feasible sets of pairs M. For full-credit, your algorithm

should run in O(n®) time. You do not have to prove correctness or analyze the time complexity of
the algorithm. [4 points]

[

kS

H
0

Yot

14

