CS180 Exam 2

Nicole Wong

20.25/22

Kruskal's algorithm
- 0 Correct algorithm
Cut property
- O Property stated correctly
MST change when squaring weights

- 0 Correct answer

WIS: value-to-finish time
- 0 Correct answer, with a valid example showing
why the greedy algorithm won't work

Greedy for same value knapsack

- 0 Correct algorithm, that sorts the items by weight,
and fills up the knapsack

Proof of cycle property

Moderate attempt

Knapsack with 3 copies

- 0 Correct algorithm

Most valuable subsequence

- 0 Correct algorithm.

RNA with squared norm stability

- 0 Correct.
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Mid-term, February 24, 2017

CS180: Algorithmg and Complexity
Winter 2017 '

Guidelines:
® The exam ig closed book and closed notes. Do not open the exam until instructed to do so.
* Write your solutiong clearly and when asked to do so, provide complete proofs.

e Unless told otherwige YOu may use resy]ts and algorithms We proved in clagg without proofs
Or complete detajlg as long ag You state what You are using.

¢ I recommeng taking a quick look at aj the questions first and then deciding what order
to tackle to them in. Even if you don’t solve the problemg fully, attempts that show some
understanding of the questions and relevant topics wij] get Teasonable partig) credit,

® You can yge extra sheets for scratch work, byt try to use the white space (it should be more
than enough) on the exam sheets for your fina] solutions.

¢ Mogt x'mp@rtantly, make sure you adhere to the
course webpage, i
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4. Consider the weighted interval scheduling problem where we are given n jobs as input with the
’th job having start time s;, finish time Ji, and value v;. (Thus, the input to the problem is
n triples (s1, f1,v1), ..., (sn, fn, vn). ) Recall that our goal is to find the set of non- conflicting
jobs with the hlghest posnble total value. Consider the following greedy algorithm for the
question:

(a) Set A=0, R=1{1,2,...,n}.
(b) While R # 0
. Pick job i € R with highest v;/f; (value to finish time ratio) and add ¢ to A.

. Remove i and all jobs that conflict with i from R. A 5. il ;
Y 23 45 3 &
(¢) Return A. ¢, i T3 |
¢ ‘ /

Irue or false: A achieves the highest possible total value. If true, provide a brief explanation.
If false, provide a counterexample. [2 points]
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5. You have n items with the 7’th item having Weight wy. ou also have a knapsack with total

weight capacity W (i.e., it can safely hold items whose total weight is at most W). Describe
an algorithm for picking a largest possible subset of items that can be placed safely in the
knapsack. That is, describe an algorithm to find a subset S € {1,2,...,n} of maximum
possible size such that 3. jeswi < W. For full-credit, your algorithm should run in time

-

Ulnlogn). “You don’t have to prove correctness or analvzc the time complex1ty of the algoritm.
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[Hint: One approach is to glve a greedy algorithm.]
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2 Problem x%wf

Suppose you have a weighted undirected graph G = (V, E) where all the weights are distinct. Prove
that if an edge e is part of a cycle C' and has weight more than every other edge in the cycle, then
e cannot be part of the minimum spanning tree in G. [3 points]

[Hint: Assume that the statement is false for the sake of contradiction and let T' being a MST
that contains the edge e. Arrive at a contradiction by a swapping argument as we did in class for
proving the cut property.]
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3 Problem

Give a dynamic programming algorithm for the following version of knapsack where you have three
copies of each item. There are n types of items with weights wy,...,w, respectively and value
v1,..., vy respectively and you have three copies of each item. Suppose you have a knapsack of
total weight capacity W. We a say configuration (ai,...,a,) is safe if 0 < a; < 3 and ayw; +
aswy + ... +aw, < W (ie., it is safe to pack a; copies of item 1, as copies of item 2, ..., a, copies
of item n into the knapsack). The value of a configuration is the total value of the items in the
configuration: for a configuration (ay,...,an), its value is viay + vaaz + -+ + vpan.

Give an algorithm which given the numbers wy, ..., wy, v1,...,v,, W as input computes the
maximum value achievable over all safe configurations. For full-credit it is sufficient to give a correct
algorithm for the problem which runs in time O(nW) and it is not required to prove correctness or
analyze the time-complexity of the algorithm. You must provide full description of the algorithm.

[4 points]
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4 Problem

You are given two arrays of integers X = [#[0],z[1],...,z[m]] and Y = [y[0],y[1],...,y[n]] as input.
For two subsequences of X, Y of the same length, i,e., sequenccs of indices 0 < iy <o < ... <ip <
mand 0 < j; < jg < ... < ji <n, the value of the subsequences is defined as

k

1
2. T3 jwlie] — ylie]l

=1

Give an algorithm that given XY as input computes the maximum possible value achievable over
all subsequences. For full-credit, your algorithm should run in time O(mn) (ignoring the cost

of arithmetic, i.e., adding numbers). You don’t have to prove correctness or analyze the time-
complexity of the algorithm. [4 points]

Example: X =[1,4,2,5], Y = [1,2,10, 4, 100]. Here, if you lock at subsequences z[0], 2[2], 2[3]

and y[0], g[l y[3] you get value 1/14-1/1+1/2 = 2.5. Whereas, if look at subsequences z[0], z[1}, z[2], z{3]
and y[0], y[1], y[2], y[3], you get value 1/1 4+ 1/3+1/9+1/2 ~ 1.9444. So the first subsequence has
better value. Your goal is to find the best possible value achievable over all subsequences.

[Hint: Create subproblems like we did for edit-distance in class and develop the appropriate
recurrence.|
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5 Problem

Consider the following variant of the RNA sequencing question. Given a sequence X = (z1,...,Zp),

1. Each index appears in at most one pair in M (i.e., no repetitions).

2. Each pair is one of {G,C} or {A,U}. That is, for all 1 < p < 'm, {z;,,z;,} is one of {G,C}
or {4,U}.

3. No sharp edges: For all pairs (i,j) € M, 7 < j— 4.

4. No crossing edges: If pairs (i,7), (k,£) € M, then we cannot have i < k < j < Z.
(These are the same rules as we worked with in class.)

The stability of an allowed set of pairs M is given by the following formula:

m

Gfabzlzty(l\f) = Z(Jp - Z'p)‘z'
pr=il

That is, the stability of the collection of pairs is the sum of squares of the number of characters
between each pair. Give an efficient algorithm that given a sequence X = (x1,...,7,) computes
the maximum possible stability(M) over all feasible sets of pairs M. For full-credit, your algorithm
should run in O(n?®) time. You do not have to prove correctness or analyze the time complexity of
the algorithm. [4 points]
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