CS180 Exam 2

Zhiyuan Yang

19/22

Kruskal's algorithm
- 0 Correct algorithm

Cut property
- O Property stated correctly

MST change when squaring weights
- 0 Correct answer

WIS: value-to-finish time
- 0 Correct answer, with a valid example showing
why the greedy algorithm won't work

Greedy for same value knapsack
- 0 Correct algorithm, that sorts the items by weight,
and fills up the knapsack

Proof of cycle property

- 0 Correct proof.

Knapsack with 3 copies

- 0 Correct algorithm

Most valuable subsequence

Multiple errors in recurrence relations or
initialization of memoization array issue or sub
problem breakup issue or broadly unclear

presentation.

RNA with squared norm stability
Right subproblems and loop correct and slight
mistake in memoization and recurrence or

incomplete code with some initialization.

Page 1

Mid-term. February 24, 2017

CS180: Algorithms and Complexity
Winter 2017

Guidelines:

The exam is closed book and closed notes. Do not open the exam until instructed to do so.
Write your solutions clearly and when asked to do so, provide complete proofs.

Unless told otherwise you may use results and algorithms we proved in class without proofs
or complete details as long as you state what you are using.

I recommend taking a quick look at all the questions first and then deciding what order
to tackle to them in. Even if you don’t solve the problems fully, attempts that show some
understanding of the questions and relevant topics will get reasonable partial credit.

You can use extra sheets for scratch work, but try to use the white space (it should be more
than enough) on the exam sheets for your final solutions.

Most importantly, make sure you adhere to the policies for academic honesty set out on the
course webpage. The policies will be enforced strictly and any cheating reported.

Problem | Points | Maximum

1 7

2 3

4 4

5 4

Total 22

Name Zhi yua
UID T L
Section P A

1 Problem

The answers to the following should fit in the white space below the question.

1. Write down Kruskal’s algorithm. It is sufficient to write down the main while loop and the
rule describing how the algorithm proceeds. [1 point]

; : ¢

2. State the cut property we used in class to analyze Kruskal’s and Prim’s algorithms. [1 point]

¢

o 4
) § =y
i,

3. Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G,
with edge costs that are all positive and distinct. Let 7' be a minimum spanning tree for this
instance. Now suppose we replace each edge cost c. by its square, ¢?, thereby creating a new
instance of the problem with the same graph but different costs.

True or false: 7 must still be a minimum spanning tree for this new instance. [1 point]

e

4. Consider the weighted interval scheduling problem where we are given n jobs as input with the
i’th job having start time s;, finish time f;, and value v;. (Thus, the input to the problem is
n triples (s1, f1.v1), .- (Sn, fn,vn).) Recall that our goal is to find the set of non-conflicting

jobs with the highest possible total value. Consider the following greedy algorithm for the
question:
(a) Set A=0, R={1,2,...,n}.
(b) While R # 0:
i. Pick job ¢ € R with highest v;/f; (value to finish time ratio) and add 7 to A.
ii. Remove i and all jobs that conflict with ¢ from R.
(¢) Return A.

True or false: A achieves the highest possible t
If false, provide a counterexample. [2 points

[

You have n items with the 7’'th item having weight w;. You also have a knapsack with total
weight capacity W (i.e., it can safely hold items whose total weight is at most W). Describe
an algorithm for picking a largest possible subset of items that can be placed safely in the
knapsack. That is, describe an algorithm to find a subset S C {1,2,...,n} of maximum
possible size such that) . .qw; < W. For full-credit, your algorithm should run in time
O(nlogn). You don’t have to prove correctness or analyze the time complexity of the algoritm.
[2 points]

Hint: One approach is to give a greedy algorithm.]
E 2 _ ey’
N T L') = v, ... bkl {

j

2 Problem

Suppose you have a weighted undirected graph G = (V, E) where all the weights are distinct. Prove
that if an edge e is part of a cycle C and has weight more than every other edge in the cycle, then

e cannot be part of the minimum spanning tree in G. [3 points]
[Hint: Assume that the statement is false for the sake of contradiction and let 7" being a MST

that contains the edge e. Arrive at a contradiction by a swapping argument as we did in class for

proving the cut property.|

3 Problem

Give a dynamic programming algorithm for the following version of knapsack where you have three
copies of each item. There are n types of items with weights wy, ..., w, respectively and value
vy, ..., v, respectively and you have three copies of each item. Suppose you have a knapsack of
total weight capacity W. We a say configuration (ai,...,a,) is safe if 0 < a; < 3 and ayuy +
aswa + ... +anw, < W (ie., it is safe to pack a; copies of item 1, ap copies of item 2, ..., an copies
of item n into the knapsack). The value of a configuration is the total value of the items in the
configuration: for a configuration (ay,...,an), its value is via; + voag + -+ + vpan.

Give an algorithm which given the numbers wy, ..., wy, v1,...,vs, W as input computes the
maximum value achievable over all safe configurations. For full-credit it is sufficient to give a correct
algorithm for the problem which runs in time O(nW) and it is not required to prove correctness or

analyze the time-complexity of the algorithm. You must provide full description of the algorithm.

/- 1.“
{ p()lllbbj

10

4 Problem

You are given two arrays of integers X = [2[0], 2[1],...,z[m]] and Y = [y[0], y[1], ..., y[n]] as input.
For two subsequences of X, Y of the same length, i.e., sequences of indices 0 <y <ig < ... < i <
mand 0 < j7 < Jg < ... < Jr < n, the value of the subsequences is defined as

k

1
2 TRl ol

£=1

Give an algorithm that given X, Y as input computes the maximum possible value achievable over
all subsequences, For full-credit, your algorithm should run in time O(mn) (ignoring the cost

of arithmetic, i.e., adding numbers). You don’t have to prove correctness or analyze the time-
complexity of the algorithm. [4 points]

Example: X = [1,4,2,5], Y = [1,2,10,4, 100]. Here, if you look at subsequences z[0], z[2], z[3]
and y[0], y[1], y[3] you get value 1/1+1/1+1/2 = 2.5. Whereas, if look at subsequences [0}, z[1], z[2], z[3]

i

and y[0], y[1], y[2], ¥[3], you get value 1/1 4+ 1/3+1/9+1/2 ~ 1.9444. So the first subsequence has

[Hint: Create subproblems like we did for edit-distance in class and
recurrence.] 1 VIS]

s;,{.:f{«yi!

12

5 Problem

Consider the following variant of the RNA sequencing question. Given a sequence X = (z1,...,%n),
a set of pairs M = {(41,71), (i2, J2), - - -, (im, Jm)} is an allowed set of pairs if the following hold:

1. Each index appears in at most one pair in M (i.e., no repetitions).

2. Each pair is one of {G,C} or {A,U}. That is, for all 1 <p < m, {2;,,2;,} is one of {G,C'}
or {A,U}. :

3. No sharp edges: For all pairs (i,7) € M, ¢ < j —4.
4. No crossing edges: If pairs (i,), (k,£) € M, then we cannot have i < k < j < £.

(These are the same rules as we worked with in class.)
The stability of an allowed set of pairs M is given by the following formula:

m

stability(M) = Z(jp = ip>2-
p=1

That is, the stability of the collection of pairs is the sum of squares of the number of characters
hetween each pair. Give an efficient algorithm that given a sequence X = (r1,...,2,) computes
the maxinum possible stability(M) over all feasible sets of pairs M. For full-credit, your algorithm
should run in O(n®) time. You do not have to prove correctness or analyze the time complexity of
.

| points]
pomtsj

13

14

