1 Problem

The answers to the following should fit in the white space below the question.

1. For each pair (f,g) below indicate the relation between them in terms of 0,0, 0. For each
missing entry, write-down Y (for YES) or N (for NO) to indicate whether the relation holds

(no need to justify your answers here). For example, if f = O{g) but not Q(g), then you
first box and N in the other two boxes. Similarly, if f = ©(g), then you

ntor Voin +h
DU A (3 S S v

Jn~ai 1A A n
S0uUlQ enter Y in tine

should enter Y in all the boxes. [1 point)

f g 0 Q1 e
loggn | loggn | ¥ | Y | Y
qn 6" Y f%j f‘ij

2. Is the following True or False: Consider a divide and conquer algorithm which solves a problem
on an instance of length n by making five recursive calls to instances of length ([n/2]) each,
and combines the answers in O(n?) fime. Then, the time-complexity of the algorithm is
O(n?). {1 point]

False

-

3. State the principles behind the divide and conquer technique for designing algorithms.
point]

4. What is the solution to the recurrence T(1) = 1, T'(n) = 2T(n/2) + 100n? [1 point]

pe—

5. Write down the definition of the discrete Fourier Transform for signals of length n (i.e., write
down the expression we used for DFTy(ag, a1, ..., an-1)). [1 point]

6. 3
~ grawlm 1 i
grapns. |1 poin

e =

rite down some pros and cons of the adjacency-list and adjacency-matrix representations
3

o of /
e ot o edlqe

-~

Let G be a weighted di

Let G rected graph with positive weights. Suppose we ran Dijkst
starting from a vertex s to compute the shortest distances from s to all vertices in G and let

T be the tree formed by the PARENT links that are computed during the run of the algorithm.

Now suppose we change the weights of the graph as follows: for every edge e that is not part
ed with 2 w,. The xxrp]ghf& of edges in

B 8 Ll CLmTs 1l

of 7', its weight is doubled, i.e., its weight w, ig repl
T are not changed. This creates a new instance G’ of the problem with the same underlying
graph but different costs on all the edges which are not part of 7.

True or false: “The shortest distances from s to other vertices in the new instance are the
same as they were in the original weighted graph.” If true, provide a brief explanation why
and if false, provide an example of a graph G where the statement fails. [2 points]

8. Let G = (V, E) be a weighted undirected graph with positive weights and let s be a vertex in
G. Consider a variant of Dijkstra’s algorithm where we grow the set of vertices S by picking
the vertex v ¢ S that has the shortest edge to any vertex in S. That is, consider the following
algorithm:

(a) Set S = {s}. Set ¢(s) =0 and ¢(v) = oo for all v # s.
(b) While § # V:
i. For each vertex v ¢ S, let ¢/(v) = min{lp,) 1 v € 5, (u,v) € E}.
ii. Find the vertex v ¢ S with least ¢/(v) and let u € S be the corresponding vertex
that achieves the minimum in the definition of ¢(v).
iii. Set c(v) = c(u) + Ciy,0)-
Does the above algorithm compute the lengths of the shortest paths from s to all other
vertices? That is, are the numbers ¢(v) computed by the algorithm the distances to v from
s7 If yes, provide a brief explanation why this may be true. If not, provide an example of a
graph G where the algorithm fails to compute the lengths of the shortest paths. [2 points]

2 Problem

Let n be an even integer and let @, denote the n X n matrix with rows and columns indexed by
0<j,k<n—1and Qulj k] = g~ 2milgk)/n

1. Can you identify any repeating pattern in the matrix), (like the one we saw in our derivation
of FFT for computing the discrete Fourier Transform)? [2 points]

2. Can you connect the matrices in the pattern to the matrix @, /7 [2 points]

. gk,'«,’ P
i
Ty O

g
(WA

i,

3 Problem

An array A[0,1,...,n — 1] is said to have a majority element if more than half of its elements are
the same. Given an array, the task is to design an efficient algorithm to tell whether the array has
a majority element, and, if so, to find that element. The elements of the array are not necessarily
from some ordered domain like the integers, and so there can be no comparisons of the form “is
Ali] > Alj]7". (Think of the array elements as mp3 files, say; so in particular, you cannot sort the
elements.) However you can answer questions of the form: “is A[i] = A[j]" in constant time.

Give an algorithm to solve the problem. For full-credit, your algorithm should run in time
O(nlogn). (You don’t have to prove correctness or analyze the time-complexity of the algorithm.)
[4 points]

(Hint: Split the array A into two arrays Ay and Ag of hall the size each. Does kno
majority elements of Ay and Ag help you figure out the majority element of A? If so, yo
a divide-and-conquer approach.)

=
o
o

o— [

§

LS N

S’

12

4 Problem

Let G = (V,E), where V = {1,2,3,4,5,6} and E = {{1,2},{1,6},{2,5},{2,6},{3,4},{3,5}, {3,6},
{4,6},{5,6}}. Suppose that G was given to you in adjacency list representation where the elements

in the adjacency list are ordered in increasing order. For example, the adjacency list of vertex 2
would be [1, 5, 6]. o

1. Draw the BFS tree that you would get when doing BFS starti

2. Draw the DFS tree that you would get when doing DFS starting from 1. [2 points]

(You don’t have to show all the stages of the algorithms just the final trees. Also, keep in mind
that you process elements of the adjacency list in increasing order. For example, when doing DFS,
you push vertices from an adjacency list onto the stack in increasing)

PR [
Slily UTUCL.)

H

'
Iy
7
S
p
7 ¥ Y
e 4 5L h
A - /
143 £
o -
r g “@ s
27 &~ > 6
& T T S
R ke
| L % > %
‘
oo~
™y
7
7/ / .,
/ 4
3 4
2
! 0
ﬁjy
/
& e
13
g

5 Problem

Let G = (V,E) be an undirected (unweighted) graph and for any two vertices u,v € G, let
distance(u,v) be the length of the shortest path between u, v if one exists and oo if they are not
connected. Define the diameter of a graph GG to be the maximum distance between any two ver-
tices of the graph G that is, diameter(G) = max{distanceg(u,v) : u,v € G}. Give an algorithm
that given a graph G = (V, E) (in adjacency list representation) as input, computes the diameter
of G, diameter(G). For full-credit, your algorithm should run in time O(|V|?+|V|-|E|)). [4 points]

o0.0n w & Lid]

£
@

15

