
1 Problem 

For each pair (f, g) below indicate the relation between them in terms of 0, fl, 8. For each missing 
entry, write-down Y (for YES) or N (for NO) to indicate whether the relation holds (no need to 
justify your answers here). For example, iff= O(g) but not fl(g), then you should enter Yin the 
first box and N in the other two boxes. Similarly, if f = 8(g), then you should enter Y in all the 
boxes. ~> pt>ttlL' . 
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2 Problem 

Answer true or false for the following (no need for explanations) l () poillt <: 

• Consider an instance of the stable matching where a doctor D 1 's first choice is H 1 and H 1's 
first choice is D1. Is it true that in every stable matching D1 should be matched to H 1? 

YB . 
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• Consider an instance of the stable matching problem and a candidate perfect matching M 
where one doctor gets her top choice and one hospital gets its top choice, while every other 
doctor and hospital get their second choice. Is M necessarily a stable matching? 

• If o is an n'th root of unity, then 2:]~0 1 oJ = 2n. o I 
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• Dijkstra 's algorithm when run on an unweighted undirected graph starting from a vertex s 
gives us (by looking at the graph formed by Parent links) the breadth-first-search tree starting 
from s. 

• Any polynomial P : IR ---t IR of degre~ d is uniquely determined by its evaluations at d distinct 
points x1, ... , Xd· 
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3 Problem . . 

E . t (in adjacency list representatiOn), give 
Given a connected undirected graph G = (V, ) als mptuhe time-complexity of your algorithm but 
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4 Problem 

Given the coefficients of a polynomial P of degree d and an integer k as input, give an algorithm 
to compute the coefficients of the polynomial P(x)k . For example, if your input is (1, 1) (to denote 
the polynomial 1 + x) and k = 3, your output should be (1, 3, 3, 1) to denote the polynomial 
(1 + x) 3 = 1 + 3x + 3x2 + x3 . Similarly, if the input is (1, -3) (to denote P = 1- 3x), k = 3, your 
output should be (1, - 9,27,-27). 

To get full credit, your algorithm should be correct, run in time O((k ·d) log(k ·d)) and you 
must analyze the time-complexity of your algorithm (no need to prove correctness). ·'2 .-) poilll" 

Remark: Here we measure time-complexity as in the fast-polynomial multiplication algorithm, 
where we count complex additions and multiplications as unit-cost. 
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5 Problem 

Let G = (V, E) be a directed graph with nodes v1, . .. , Vn. We say that G is an ordered graph if it 
has the following properties . 

1. Each edge goes from a node with a lower index to a node with a higher index. That is, every 
directed edge has the form (Vi, Vj) with i < j. 

2. Each node except Vn has at least one edge leaving it. That is, for every node Vi, i = 1, 2, ... , n-
1, there is at least one edge of the form (vi, Vj). 

Given an ordered graph G = (V, E) (in adjacency list representation), give an algorithm to compute 
the number of paths that begin at v1 and end at Vn· 

You must analyze the time-complexity of your algorithm (no need to prove correctness). To get 
full-credit your algorithm must be correct and run in time O(!VI +lEI). ~:-) p(linb 

Remark: You can assume that adding two numbers takes constant time in your time-complexity 
calculations. 
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6 Problem /0 
Decide whether the following statement is true or false. If it is true, give a short explanation (no 
need for a formal proof- a high-level description is enough). If it is false, give a counter-example. 

Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G, with 
edge costs that are all positive and distinct. Let T be a minimum spanning tree for this instance. 
Now suppose we replace each edge cost Ce by its square, c~, thereby creating a new instance of the 
problem with the same graph but different costs. 

True or false? T must still be a minimum spanning tree for this new instance. [Ifl poiut~ : 
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7 Problem 

Given an undirected graph G = (V, E) , a subset of vertices I ~ V is an independent set in G if 
no two vertices in I are adjacent to each other. Let a:( G)= max{III :I an independent set in G}. 
The goal of the following questions is to give an efficient algorithm for computing an independent 
set of maximum size in a tree. Recall that a leaf in a graph is a vertex of degree at most 1 and 
that every acyclic graph (graph without any cycles) has at least one leaf. 

LetT= (V, E) be an acyclic graph on n vertices. 

1. Prove that if u is a leaf in T, then there is a maximum-size independent set in T which 
contains u. That is, for every leaf u, there is an independent set I such that u E I and 
III = o:(T). r lfl point.,.; J 

2. Give the graph T as input (in adjacency edge representation), give an algorithm to compute 
an independent-set of maximum size, o:(T), in T. To get full credit your algorithm should 
run in time O(IVI ·lEI) (or better) and you must prove correctness of your algorithm. You 
don't need to analyze the time-complexity of your algorithm and it is sufficient to solve this 
problem assuming part (1) (if you want) even if you don't solve it. ' J.""J pnlllti' 
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