
1 Problem

For each pair (f, g) below indicate the relation between them in terms of 0, fl, 8. For each missing
entry, write-down Y (for YES) or N (for NO) to indicate whether the relation holds (no need to
justify your answers here). For example, iff= O(g) but not fl(g), then you should enter Yin the
first box and N in the other two boxes. Similarly, if f = 8(g), then you should enter Y in all the
boxes. ~> pt>ttlL' .

f g 0 n e
log2n log 10 n y y y

2(log2 n) n5 ~ ~ It\
n 3 · 2n 3n .,_._

~ t'\
2

log2 log2 n log2 n 'I y ki
n! nn y t\ f\

(r ' · f"t(.· '(I•

7

3

7 '

f
.I

2 Problem

Answer true or false for the following (no need for explanations) l () poillt <:

• Consider an instance of the stable matching where a doctor D 1 's first choice is H 1 and H 1's
first choice is D1. Is it true that in every stable matching D1 should be matched to H 1?

YB .
I

• Consider an instance of the stable matching problem and a candidate perfect matching M
where one doctor gets her top choice and one hospital gets its top choice, while every other
doctor and hospital get their second choice. Is M necessarily a stable matching?

• If o is an n'th root of unity, then 2:]~0 1 oJ = 2n. o I
fl 't (}_

't-11 - I

l cl

• Dijkstra 's algorithm when run on an unweighted undirected graph starting from a vertex s
gives us (by looking at the graph formed by Parent links) the breadth-first-search tree starting
from s.

• Any polynomial P : IR ---t IR of degre~ d is uniquely determined by its evaluations at d distinct
points x1, ... , Xd·

4

)_5
3 Problem . .

E . t (in adjacency list representatiOn), give
Given a connected undirected graph G = (V,) als mptuhe time-complexity of your algorithm but

. G · t You must ana yze d · f e an algorithm to check lf lS a ree. d. r algorithm should be correct an run m lm don't need to prove correctness. For full ere lt, you
O(IVI + lEI). [F) poiut"j

!(&;"" \'l'si A J "''*' A [~J :: ~ '~ ~r-1: ct>\ ~!J·w~cy 1·,~\
/({o.t~+ Vcr11ce5"

~utt..Y tfJ; rPs = A . (0\J.'\ \C)
· "-"-ff\D11 e-s -:: 0

ICOJ~i ea..,es

+of' _ =-Q ~ L L. V\~"'Ver{, ces; ~ ~ f
1\~~~~bl~,; -t ::_ A [L J. (o\IJ)

3 t:l 'J (' 1/ ldi<fs CXJ) +o r;Jr.~ ~~\f.t ' (\Uti\ 14~ es := 1\Uiol C jes L ; T'

J te\tl\ "'u•Nerf;<B" :::: 1\~:, H~•r t \ ____________ _

l:J h~, CO\l"i(\ ~aks co~~~.r'{ \; ·· ~ [hJ ~·, ~ ~Jo~ 05

~o~t'~l af
1
•>1-\ 1~e• l("):: 0{\YIJ {ru"' \\, J,. loop ~+CD

,\,,. ·,j \VI t .. u 6"~ "'\ Q"L, Df1Y~\rd,5 ~k.·., CXl)

It hktw~kl h1 1
o bP

6
c~lcul~q of +~~ ~y ~y loo 1 t~j i~ru~ h

\k ~~~' he' 'f{") :::: (a.~ f W<~ c•1 1- co,, 1 a\\ tl!~e 5 ,.\~
0 (J) I

tt. $";+ hsLcM-If) Inks 0(\I.AI). -=t 1{~)-:0C\V\t\'C.IJ
) ~ 0

4 Problem

Given the coefficients of a polynomial P of degree d and an integer k as input, give an algorithm
to compute the coefficients of the polynomial P(x)k . For example, if your input is (1, 1) (to denote
the polynomial 1 + x) and k = 3, your output should be (1, 3, 3, 1) to denote the polynomial
(1 + x) 3 = 1 + 3x + 3x2 + x3 . Similarly, if the input is (1, -3) (to denote P = 1- 3x), k = 3, your
output should be (1, - 9,27,-27).

To get full credit, your algorithm should be correct, run in time O((k ·d) log(k ·d)) and you
must analyze the time-complexity of your algorithm (no need to prove correctness). ·'2 .-) poilll"

Remark: Here we measure time-complexity as in the fast-polynomial multiplication algorithm,
where we count complex additions and multiplications as unit-cost.

8

5 Problem

Let G = (V, E) be a directed graph with nodes v1, . .. , Vn. We say that G is an ordered graph if it
has the following properties .

1. Each edge goes from a node with a lower index to a node with a higher index. That is, every
directed edge has the form (Vi, Vj) with i < j.

2. Each node except Vn has at least one edge leaving it. That is, for every node Vi, i = 1, 2, ... , n-
1, there is at least one edge of the form (vi, Vj).

Given an ordered graph G = (V, E) (in adjacency list representation), give an algorithm to compute
the number of paths that begin at v1 and end at Vn·

You must analyze the time-complexity of your algorithm (no need to prove correctness). To get
full-credit your algorithm must be correct and run in time O(!VI +lEI). ~:-) p(linb

Remark: You can assume that adding two numbers takes constant time in your time-complexity
calculations.

f\Utt\ ~~t~5 (~) f
-rr ~,,-~, ~~~~~ ~o~h, [l]

j

eoA e!~~ a~ ~(·~~ (v,, v) ,~ AL J
W (~~t,lo N l~ \) ~'~t t::: """~ ~~.1~s[j)

~\)"'~~\~~ [t]
\'~t~r"

A \

~\H~

~~sloN 0 deso-:IJ l d~ ,

6 Problem /0
Decide whether the following statement is true or false. If it is true, give a short explanation (no
need for a formal proof- a high-level description is enough). If it is false, give a counter-example.

Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G, with
edge costs that are all positive and distinct. Let T be a minimum spanning tree for this instance.
Now suppose we replace each edge cost Ce by its square, c~, thereby creating a new instance of the
problem with the same graph but different costs.

True or false? T must still be a minimum spanning tree for this new instance. [Ifl poiut~ :

If

)_
y

12

c-z
e

1(
.J

7 Problem

Given an undirected graph G = (V, E) , a subset of vertices I ~ V is an independent set in G if
no two vertices in I are adjacent to each other. Let a:(G)= max{III :I an independent set in G}.
The goal of the following questions is to give an efficient algorithm for computing an independent
set of maximum size in a tree. Recall that a leaf in a graph is a vertex of degree at most 1 and
that every acyclic graph (graph without any cycles) has at least one leaf.

LetT= (V, E) be an acyclic graph on n vertices.

1. Prove that if u is a leaf in T, then there is a maximum-size independent set in T which
contains u. That is, for every leaf u, there is an independent set I such that u E I and
III = o:(T). r lfl point.,.; J

2. Give the graph T as input (in adjacency edge representation), give an algorithm to compute
an independent-set of maximum size, o:(T), in T. To get full credit your algorithm should
run in time O(IVI ·lEI) (or better) and you must prove correctness of your algorithm. You
don't need to analyze the time-complexity of your algorithm and it is sufficient to solve this
problem assuming part (1) (if you want) even if you don't solve it. ' J.""J pnlllti'

If
/

l f u,ti'
.J

3 d~e (uJv) J
(G'\ !o fl~

WJ\

\ u. ()

~~ ~HIJ
tl\!1~ T'

14

l'.

v

