

For each pair (f,g) below indicate the relation between them in terms of O, Ω, Θ . For each missing entry, write-down Y (for YES) or N (for NO) to indicate whether the relation holds (no need to justify your answers here). For example, if f = O(g) but not $\Omega(g)$, then you should enter Y in the first box and N in the other two boxes. Similarly, if $f = \Theta(g)$, then you should enter Y in all the boxes. [5 points].

f	<i>g</i>	0	Ω	Θ
$\log_2 n$	$\log_{10} n$	Y	Y	Y
$2^{(\log_2 n)^4}$	n^5	X	N/	N
$n^3 \cdot 2^n$	3^n	A	X	N
$2^{\sqrt{\log_2\log_2 n}}$	$\log_2 n$	Y	X	Ń
n!	n^n	γ	n	r

Answer true or false for the following (no need for explanations) [10 points]:

• Consider an instance of the stable matching where a doctor D_1 's first choice is H_1 and H_1 's first choice is D_1 . Is it true that in every stable matching D_1 should be matched to H_1 ?

• Consider an instance of the stable matching problem and a candidate perfect matching M where one doctor gets her top choice and one hospital gets its top choice, while every other doctor and hospital get their second choice. Is M necessarily a stable matching?

• If α is an *n*'th root of unity, then $\sum_{j=0}^{2n-1} \alpha^j = 2n$.

21.1 h

X

- False
- Dijkstra's algorithm when run on an unweighted undirected graph starting from a vertex s gives us (by looking at the graph formed by *Parent* links) the breadth-first-search tree starting from s.
- Any polynomial $P : \mathbb{R} \to \mathbb{R}$ of degree d is uniquely determined by its evaluations at d distinct points x_1, \ldots, x_d .

False

True

Given a connected undirected graph G = (V, E) as input (in adjacency list representation), give an algorithm to check if G is a tree. You must analyze the time-complexity of your algorithm but don't need to prove correctness. For full credit, your algorithm should be correct and run in time O(|V| + |E|). [15 points]

15

For shaple connected
graph G,
$$|V| = |E| + |$$
 iff G is a free
"Given Itst A, with $A[i] = i^{th}$ vertice's adjurancy list
"(Court vertices = A. count()
"NumEdges = A. count()
"Court edges
for $i = 0$; $i \le numVertices$; $i + t \in$
numEdges $+ = A[i].count()$
3
numEdges = numEdges $/2$; "takes OCO to right shift
return numVertices == numEdges $+ |$
It list.count() takes constant time (list size stored as
property of list), then T(n) = O(|V|) from the for loop at(2)
iterating |V| times and all other operations taking OCD.
IF test.count() takes OCI is $+$ count all edges where
a single list.count() takes OCI list), $\Rightarrow T(n) = O(|V| + |E|)$

Given the coefficients of a polynomial P of degree d and an integer k as input, give an algorithm to compute the coefficients of the polynomial $P(x)^k$. For example, if your input is (1, 1) (to denote the polynomial 1 + x) and k = 3, your output should be (1, 3, 3, 1) to denote the polynomial $(1 + x)^3 = 1 + 3x + 3x^2 + x^3$. Similarly, if the input is (1, -3) (to denote P = 1 - 3x), k = 3, your output should be (1, -9, 27, -27).

To get full credit, your algorithm should be correct, run in time $O((k \cdot d) \log(k \cdot d))$ and you must analyze the time-complexity of your algorithm (no need to prove correctness). [25 points]

Remark: Here we measure time-complexity as in the fast-polynomial multiplication algorithm, where we count complex additions and multiplications as unit-cost.

() (2)

Let G = (V, E) be a directed graph with nodes v_1, \ldots, v_n . We say that G is an ordered graph if it has the following properties.

- 1. Each edge goes from a node with a lower index to a node with a higher index. That is, every directed edge has the form (v_i, v_j) with i < j.
- 2. Each node except v_n has at least one edge leaving it. That is, for every node v_i , i = 1, 2, ..., n-1, there is at least one edge of the form (v_i, v_j) .

Given an ordered graph G = (V, E) (in adjacency list representation), give an algorithm to compute the number of paths that begin at v_1 and end at v_n .

You must analyze the time-complexity of your algorithm (no need to prove correctness). To get full-credit your algorithm must be correct and run in time O(|V| + |E|). [25 points]

Remark: You can assume that adding two numbers takes constant time in your time-complexity calculations.

10

Decide whether the following statement is true or false. If it is true, give a short explanation (no need for a formal proof - a high-level description is enough). If it is false, give a counter-example.

Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G, with edge costs that are all positive and distinct. Let T be a minimum spanning tree for this instance. Now suppose we replace each edge cost c_e by its square, c_e^2 , thereby creating a new instance of the problem with the same graph but different costs.

True or false? T must still be a minimum spanning tree for this new instance. [10 points]

It weight $(T) = \min \text{ ord } w(T) = \sum_{e \in T} C_e$ then when you replace ce with ce for tree T' $w(T') = \sum_{r=1}^{\infty} (r - \sum_{r=1}^{\infty} c_r^2)$ = \N/I berause 2 = decting recently for x70 to if a cb, 2 cb? Va, b70

Given an undirected graph G = (V, E), a subset of vertices $I \subseteq V$ is an independent set in G if no two vertices in I are adjacent to each other. Let $\alpha(G) = \max\{|I| : I \text{ an independent set in } G\}$. The goal of the following questions is to give an efficient algorithm for computing an independent set of maximum size in a tree. Recall that a *leaf* in a graph is a vertex of degree at most 1 and that every acyclic graph (graph without any cycles) has at least one leaf.

Let T = (V, E) be an acyclic graph on n vertices.

- 1. Prove that if u is a leaf in T, then there is a maximum-size independent set in T which contains u. That is, for every leaf u, there is an independent set I such that $u \in I$ and $|I| = \alpha(T)$. [15 points]
- 2. Give the graph T as input (in adjacency edge representation), give an algorithm to compute an independent-set of maximum size, $\alpha(T)$, in T. To get full credit your algorithm should run in time $O(|V| \cdot |E|)$ (or better) and you must prove correctness of your algorithm. You don't need to analyze the time-complexity of your algorithm and it is sufficient to solve this problem assuming part (1) (if you want) even if you don't solve it. [15 points]

Assume
$$\exists$$
 non-size independent and I' in T . (Here durys evides
If $u \in I'$, then Civ and I' in T . (Here durys evides
If $u \notin I'$, then Civ and $=$ I' .
If $u \notin I'$, then Civ and $=$ I' .
If $u \notin I'$, then wc for replace V (such that $V \in I'$
and \exists edge (u, v)) with u to make I .
We can do this because u is only connected to V
because it is a track to replacing u with v doesn't odd
or v eriges to I to make T .