
Exam 2. May 16, 2018

CS180: Algorithms and Complexity
Spring 2018

Guidelines:

• The exam is closed book and closed notes. Do not open the exam until instructed to do so.
You have one hour and fifty minutes for the exam.

• Write your solutions clearly and when asked to do so, provide complete proofs. You may use
results and algorithms from class without proofs or details as long as you specifically state
what you are using.

• I recommend taking a quick look at all the questions first and then deciding what order
to tackle to them in. Even if you don’t solve the problems fully, attempts that show some
understanding of the questions and relevant topics will get reasonable partial credit. In
particular, even for true or false questions asking for justification, correct answers will get
reasonable partial credit.

• You can use extra sheets for scratch work, but you can only use the white space (it should
be more than enough) on the exam sheets for your final solutions.

• Most importantly, make sure you adhere to the policies for academic honesty set out on the
course webpage. The policies will be enforced strictly and any cheating reported with the
score automatically becoming zero.

• Write clearly and legibly. All the best!

Problem Points Maximum

1 10

2 4

3 4

4 4

5 4

Total 26

Name

UID

Section

1

http://cs180.raghumeka.org

2

1 Problem

1. True or False: Let P be a shortest path from some vertex s to some other vertex t in a
weighted undirected graph. If the weight of each edge in the graph is increased by one, P will
still be a shortest path from s to t (with the new weights). If true, provide an explanation of
why this is true and if false, provide a counterexample. [1 point]

False. You can take the graph with edges {1, 2}, {2, 3} with weight 1 each and edge {1, 3}
with weight 2.5 and s = 1, t = 3.

2. True or False: Let T be a MST in G. If the weights of all edges in the graph are changed by
adding 1 to the weights, then T is still a MST in the graph (with the new weights). If true,
provide an explanation of why this is true and if false, provide a counterexample. [1 point]

True. Does not change the edges picked by any of the algorithms we did in class. For
instance, say you use Kruskal’s algorithm, then at every stage, the least weight edge that
does not create a cycle would be the same so you would pick the same edges (in the same
order) in both runs.

3. True or False: If a weighted undirected graph G has more than |V | − 1 edges, and there is
a unique heaviest edge, then this edge cannot be part of a minimum spanning tree. If true,
provide an explanation of why this is true and if false, provide a counterexample. [1 point]

False. Take the graph with edges {1, 2}, {2, 3}, {3, 1} all having weights 1, 2, 3 respectively
and edge {1, 4} having weight 100.

4. True or False: When running Prim’s algorithm, after updating the set S, we only need to
recompute the attachment costs for the neighbors of the newly added vertex. No justification
necessary. [1 point]

True.

5. True or False: For a dynamic programming algorithm, computing all values in a bottom-up
fashion (using for/while loops) is asymptotically faster than using recursion and memoization.
No justification necessary. [1 point]

False.

6. Let G = (V,E), where V = {1, 2, 3, 4, 5, 6, 7} and

E = {{1, 2}, {1, 6}, {2, 3}, {2, 5}, {2, 6}, {2, 7}, {3, 4}, {3, 5}, {5, 6}}.

Suppose that G was given to you in adjacency list representation where the elements in the
adjacency list are ordered in increasing order. For example, the adjacency list of vertex 2
would be [1, 3, 5, 6]. Draw the DFS tree that you would get when doing DFS starting from 1.
(Just the final tree is enough. No need to show intermediate stages.) [2 points]

(Recall that elements of the adjacency list are processed in increasing order.)

To be worked out in discussion section.

3

7. Consider an instance of the knapsack problem with n items having values and weights
(v1, w1), . . . , (vn, wn) and knapsack having total weight capacity W . Suppose you have com-
puted the values OPT (j, w) for 1 ≤ j ≤ n and 1 ≤ w ≤W . However, in your excitement you
broke the (n − 2)’th item and it has no value anymore. How fast can you compute the new
best value? No justification necessary. [1 point]

O(1) time is in fact enough . You can use

new best-value = max

OPT (n− 3,W)

vn−1 + OPT (n− 3,W − wn−1) (if wn−1 ≤W)

vn + OPT (n− 3,W − wn) (if wn ≤W)

vn−1 + vn + OPT (n− 3,W − wn−1 − wn)) (if wn−1 + wn ≤W)

,

where the cases correspond to the new opt not containing either {n−1, n}, containing n−1’th
item but not n’th item, containing n’th item but not n− 1’th item, containing both n− 1’th
item and n’item respectively.

8. Suppose you have a weighted undirected graph G = (V,E) where all the weights are distinct.
Prove that if an edge e is part of a cycle C and has weight more than every other edge in the
cycle, then e cannot be part of the minimum spanning tree in G. [2 points]

[Hint: Assume that the statement is false for the sake of contradiction and let T be a MST
that contains the edge e. Arrive at a contradiction by a swapping argument as we did in class
for proving the cut property.]

Solution. See Claim 4.20 in text.

Note that there are many wrong ways of “proving” this by doing a swap (much like there
were wrong ways of doing the swap in the proof of the CUT property) where if you don’t use
the right edge of the cycle to swap with (pretty much the only choice that works is an edge
of the cycle that crosses the cut formed by removing the edge e), you end up with either
a disconnected graph or a graph for which you don’t have a proof that it is a tree. All such
solutions were deducted points.

2 Problem

1. Write down Dijkstra’s algorithm for computing a shortest path between two vertices s and t
in a weighted undirected graph G = (V,E) given in adjacency-list representation. [2 points]

2. True or False: Given a weighted undirected graph G = (V,E) with distinct weights and a
vertex s ∈ V , the shortest-path tree computed by Dijkstra’s algorithm starting from s and
the tree computed by Prim’s algorithm starting from s are the same. If true, provide an
explanation of why this is true and if false, provide a counterexample. [2 points]

To be worked out in discussion section.

4

3 Problem

We are given a line L that represents a long hallway in a art gallery. We are also given a set
X = {x1, x2, . . . , xn} of distinct real numbers that specify the positions of paintings in this hallway.
Suppose that a single guard can protect all the paintings within distance at most 1 of his or her
position (on both sides). For instance, if X = [0.5, 2.5, 0.8, 1, 1.5], then one guard placed at position
1.5 can cover all the paintings; if X = [0.5, 7.5, 5.6, 0.9, 1, 2, 5.9, 6.6], then two guards (placed at,
say, 1.5 and 6.5) are enough. Solve the following. [4 points]

1. Design an algorithm for finding a placement of guards that uses the minimum number of
guards to guard all the paintings. For full-credit, your algorithm should run in time O(n log n).
You don’t have to analyze the running-time.

2. Prove the correctness of your algorithm.

Solution You can follow a greedy strategy as follows:

1. Sort all items in X to get the sorted array Y .

2. Set G = ∅.

3. While Y is not empty:

(a) Let y be first element of Y . Add y + 1 to G.

(b) Starting from the left of Y , remove all elements of Y that are within distance at most 1
from y (you stop the first time you see an element at distance more than 1 from y).

4. Return G.

The run-time of the first step is O(n log n). After sorting, the algorithm takes O(n) time as
each element of Y is looked at most twice in (c).(ii).

Correctness (sketch). There are several ways to prove the correctness including a greedy stays
ahead strategy as measured by how far out the j’th guard is.

A more direct proof is as follows. Let y1 < y2 < . . . < yk be the elements chosen in G. You
can use induction to prove that the difference between any two consecutive y’s (y2 − y1, y3 − y2,
etc.,) is more than 2. Further, by the construction of the algorithm, there must be paintings at
y1−1, y2−2, . . . , yk−1. As these paintings are at distance more than 2 from each other, no matter
where a guard is placed, a guard can only cover at most one of these paintings. Therefore, at least
k guards are needed.

4 Problem

Let G = (V,E) be a directed graph with nodes {1, . . . , n}. G is an ordered graph in that it has the
following properties.

1. Each edge goes from a node with a lower index to a node with a higher index. That is, every
directed edge has the form (i, j) with i < j.

5

2. Each node except vn has at least one edge leaving it. That is, for every node i, i = 1, 2, . . . , n−
1, there is at least one edge of the form (i, j) with j > i.

Given an ordered graph G = (V,E) in adjacency-list representation with the adjacency-lists speci-
fying vertices in increasing order, give an algorithm to compute the number of paths that begin at
1 and end at n.

To get full-credit your algorithm must be correct and run in time O(|V | + |E|) and you must
show that your algorithm runs in O(|V |+ |E|) time. You don’t have to prove correctness. [4 points]

Solution. For j ≥ 2, let Paths(j) denote the number of paths that begin at 1 and end at j. Note
that Paths(j) satisfy the recurrence

Paths(j) =
∑

i<j:(i,j)∈E

Paths(i).

You can convert this recurrence into an algorithm as follows:

1. Initialize Paths(j) = 0 for 1 ≤ j ≤ n.

2. For j = 2, . . . , n:

(a) For each edge (i, j) into vertex j:

i. Set Paths(j)← Paths(j) + Paths(i). (Increment Paths(j) by Paths(i).)

The run-time of the algorithm is O(|V |) for the initialization in Step (1), and for each j, the
number of times the inner-most line (a).(i) is triggered is exactly the number of edges into j. So
the total number of times (a).(i) is executed is the sum of the total number of edges which is |E|.
So the total run-time is O(|V |+ |E|).

Common mistakes: (1) Having a counter that is incremented every time you find a path
from 1 to n using some variant of BFS/DFS. This takes exponential time. (2) Having a recursive
formulation of the above recurrence that does not use memoization.

5 Problem

Consider the weighted interval scheduling setup: we have n jobs and are given as input (s1, f1, v1),
(s2, f2, v2), . . . , (sn, fn, vn) with the i’th job having start time si, finish time fi, and value vi. Now
suppose that you are also given as input an integer k and are told that the server cannot run more
than a total of k jobs. Give an algorithm that can compute the most valuable set of jobs, that is,
find a set S that maximizes

∑
i∈S vi subject to the jobs in S not conflicting with each other and S

having at most k elements.
For full-credit, your algorithm should run in polynomial-time and you don’t have to analyze the

running-time of the algorithm or prove correctness. You can assume that all the start and finish
times are distinct. [4 points]

6

Solution. This problem is kind of a mix of WIS and knapsack (in fact, someone asked a closely
related question in class ...).

Sort the jobs according to their finish times first. In the following, for ease of notation suppose
this is already done. Let OPT (j, `) denote the best value you can get out of the first j jobs (i.e.,
the j jobs as ordered by the finish times) while using at most ` jobs in total for 1 ≤ ` ≤ k. Then,
OPT (j, `) obeys the recurrence

OPT (j, `) = max(OPT (j − 1, `) + vj + OPT (p(j), `− 1)),

where p(j) denotes the largest index of a job that does not conflict with the j’th job (as we defined
in class as well).

You can now compute the OPT values using the above recurrence and also find the best set of
jobs as we did in class by tracing the recurrence relation.

Common mistakes: (1) Having a recursive formulation of the above recurrence that does not
use memoization. (2) Not sorting the jobs by finish times first. (3) Not using p(j) in the recurrence.
(4) Not explaining how to find the best set of jobs.

7

	Problem
	Problem
	Problem
	Problem
	Problem

