404 500 049

CS180 — Algorithms and Complexity Winter 2015 D.S. Parker, Yuh-Jie Chen, Xiaoran Xu, Garrett Johnston

> Midterm Examination OPEN BOOK, OPEN NOTES Wednesday, February 11, 4:00-5:50pm

> > Do not cheat

Problem	Points
1	21/25
2	19/25
3	16 /25
4	23 /25
Total	/100

In any answer on this exam, you can make reference to any definition or result from the [KT] text by giving a section number, page number, gray box number, verbal summary, etc.

There is NO need to provide a complete reproduction or proof of these results. Short answers are good.

Similarly, you can use any definition or result from the course notes, slides, homework assignments, etc. Just be clear in your references to these sources.

A Master Theorem: for
$$a > 1$$
, $b > 1$, $k \ge 0$, the solution for $T(n) = a T(n/b) + c n^k$ is

$$T(n) = \Theta(n^{\ell})$$
 if $k < \ell = \log_b a$

if
$$k < \ell = \log_{b} a$$

$$T(n) = \Theta(n^{\ell} \log n)$$
 if $k = \ell = \log_b a$

if
$$k = \ell = \log_b a$$

$$T(n) = \Theta(n^k)$$

$$T(n) = \Theta(n^k)$$
 if $k > \ell = \log_b a$.

A Minimum Spanning Tree in an undirected graph with edge costs G = (V, E, c)is a spanning tree T for G that has minimal total cost $\sum_{e \in T} c(e)$.

A Shortest Path from a source node s to t in a directed or undirected graph $G = (V, E, \ell)$ with edge lengths ℓ is a path P from s to t with minimal total length $\sum_{e \in P} \ell(e)$. In this exam, a Shortest Path Tree is a directed tree of edges outward from s selected by Dijkstra's algorithm.

useful identities:
$$\sum_{k=1}^{N} k^p = \frac{1}{p+1} N^{p+1} + O(N^p) \qquad \sum_{k=1}^{N-1} a^k = \frac{a^N - 1}{a-1} \qquad \sum_{k=1}^{N-1} k \, a^k = \frac{N \, a^N}{a-1} + O(a^N)$$

The Master Theorem (25 points) -4

Three platypuses meet in a bar and start to argue about the Master Theorem.

(a) Master Theorem? (8 points)

One of the platypuses says that, if we assume that a > 1, b > 2, $\ell = \log_b a$, and c and k are positive constants. then the recurrence $T(n) = aT(n/b) + cn^k$ has solution

$$T(n) = \begin{cases} \Theta(n^{\ell}) & \text{if } a > b^{k} & 2 > k \\ \Theta(n^{k} \log n) & \text{if } a = b^{k} & 2 = k \\ \Theta(n^{k}) & \text{if } a < b^{k} & 2 < k \end{cases}$$

The other two platypuses laugh and say this is wrong. The first one gets angry and asks you to help prove it. The two laughing platypuses ask you to give a counterexample. What is your answer?

Short proof, or counterexample:

100, bk = klog, b=k

_ (b) Laughing Theorem (8 points)

One of the laughing platypuses says that the solution of $T(n) = aT(n/b) + c \log_b n$ is

$$T(n) = \Theta(n \log n)$$
 (assuming n is a power of b, and $T(1) = O(1)$)

and asks you to prove this. The angry platypus says no, and asks for the correct solution. What is your answer?

the angry platypus is right, the solution is incorrect. A clog n = cr = c (constant the laughing platypus is right, the solution is correct. Short proof, or corrected solution:

n is power of b >> h=b^->logn=rlogb>r=logb T(m) = a (aT (=) + c')+ c'

サ(ナ(水): 927(ニン)+2で → で「一)+でで (c) Time Complexity (9 points) $T(n) = a^{100}b^n T(1) + c' \log_b n = O(a)$

The platypuses start fighting over the asymptotic complexity T(n) of the following algorithm A:

def A(x,y): if length(x) == 1: return f(x,y); x1 = first_half(x); x2 = second_half(x); y1 = first_half(y); y2 = second_half(y); z1 = A(x1, y1);z2 = A(z2, y2);z3 = A(z1+z2, y1+y2);return z1 + z2 + z3 + f(x,y);

recurrence:
$$T(n) = 3T(\frac{\pi}{2}) + 4\Theta(n)$$

$$T(1) = \Theta(\pi)$$
solution: $T(n) = \Theta(\pi^{1 \circ 3} 2^3)$

Assume that the inputs x and y are vectors of size n, and the input lengths n are always a power of 2. The functions first_half and second_half each take an vector of size n as input, and yield an output vector of size n/2. The function f takes time $\Theta(n)$ to compute if its arguments have length n.

Please stop the fight by providing the recurrence for T(n) and its solution in the box above

(a) Applying Dijkstra's algorithm (7 points)
Kim Kardashian and Kanye West buy the directed weighted graph (balow for \$2M The
Dijkstra's algorithm to the graph, starting at vertex s. They want to know what is the order in which vertices
get added to the shortest-path tree. Please tell them the order by filling in the box, and draw the resulting
shortest-path tree on their graph.
B'apir.
order of addition to shortest-path tree
4 5 5 6 7 8
5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 7 7
(s) (g) (f)
31 3 3 4 3 4 3 6 3
(e) (d)
(b) Graph with Distinct Edge Lengths (6 points)
Kim complains that their graph is too small and spends \$3M on a larger directed acyclic graph $G = (V, E, \ell)$.
In this graph, all edges e have distinct (unique) lengths $\ell(e) > 0$. She asks you whether Dijkstra's algorithm
is guaranteed to yield a unique shortest-path tree from any source node s in her new graph.
Your answer is: Yes No. O
Proof:
[4.4] At any point in exect of Digkstrus for each UES Py is a
shortest 5-v path. Since we have unique edge lengths
phin, direct we have into it
ele will aut c
you will gyt a unique shortest puth
(c) Graph with Negative Edge Lengths (6 points)
Kanye has a life-changing experience and realizes we all need negative edges. He buys lots of directed graphs
with negative edge lengths, but never buys graphs that have cycles with a negative total length. He asks you:
"if I use Dijkstra's algorithm on these graphs, is its resulting shortest-path tree guaranteed to be correct?"
Your answer is: Yes No. Proof: Your answer is: Yes No. P(u) + P' > P(u) not surranteed
Proof:
Sires edge lengths may be regetive, we are not granuted
that the full puth P is at least as long as PV so the greedy
in the second of
algorithm is not garanteed to be correct
(d) Air Travel (6 points)
HW2 gives you the US airport graph $G=(V,E,\ell)$, and asks you to find a shortest path tree T from LAX.
All edge lengths were given as distances in miles, but if we divide by some typical airspeed like 500mph,
we can convert the edge lengths into hours. So assume each edge length $\ell(e)$ is given in hours.
Kim complains that your shortest paths are not realistic, since air travel requires at least a one-hour layover
in each airport, so you change the length $\ell(e)$ of every edge e in the graph to $\ell'(e) = \ell(e) + 1$ hour.
Is the tree T for G guaranteed to still be a shortest-path tree from LAX for the changed graph $G' = (V, E, \ell')$?
Your answer is: Yes No.
Proof:
This is equivalent to adding a constant to all l
This is equivalent to adding a constant to all l
This is equivalent to adding a constant to all l in which case Dijsteras d'(v) = min
in which case Dijstoras d'aj=mineau, vives the
in which case Dijstoras d'aj=mineau, vives the
This is equivalent to adding a constant to all le in which case Dijstoras d'(v) = miner, v): ves the would still result in the same edges being added so we will still set a shortest path tree.

ortest Paths (25 points) — 6

Minimal Spanning Trees (25 points)

Two highly-paid consultants, Kleinberg and Tardos, are arguing about spanning trees in an undirected graph G. You are hired as an even more highly-paid consultant-consultant to resolve their dispute.

V(a) MSTs with Negative Costs (9 points)

Assume that all edge costs c are distinct, but the edge costs are permitted to be negative.

Kleinberg argues the MST can be determined just by using Kruskal's algorithm.

Tardos says this is ridiculous, Kruskal's algorithm won't work in this case.

Which consultant is right? X Kleinberg Proof:

By KT (4,17) & KT (4,20) Cut and Cycle Property we can gravantee that the champast edga will not be in the graph we can then make the appoinded note the new s and keep reconstudy adding and get an MST (krustels holds)

(b) Maximum Spanning Trees (9 points)

The company changes its specifications so that all edge costs c must satisfy c > 1, and it wants an algorithm to construct Maximum Spanning Trees. In other words, it wants an efficient algorithm that finds a spanning tree with the property that the sum of its edge costs is maximum.

Kleinberg says that this new Maximum Spanning Tree problem is hard, and will take exponential time to solve

Tardos says the problem can be easily solved with minor changes to any Minimum Spanning Tree algorithm.

Which consultant is right? X Kleinberg X Tardos Proof:

The MST Algorithms north butterse of the out property and eyele property, honever there is no polynomes time equivalent phoperties for naxinom spinning trees just we c(e) Ho-c(e)

Overpaid Consultants (7 points)

Kleinberg and Tardos cannot figure out a MST for the following graph. Please draw a MST for them, and tell them whether or not it is unique.

rview Questions (25 points) —)
(a) Changing Minimum Spanning Trees (3 points) For an undirected graph G with distinct (unique) edge costs, which of the following statements are true?
True \square False \boxtimes The MST could change if we change the cost of each edge e from $c(e)$ to $c(e) + 2$. True \square False \boxtimes The MST could change if we change the cost of each edge e from $c(e)$ to $2c(e)$. True \square False \boxtimes The MST could change if we change the cost of each edge e from $c(e)$ to $c(e)^2$.
_)(b) DAGs (6 points)
True False A directed graph is a directed acyclic graph if and only if it can be topologically sorted.
True \boxtimes False \boxtimes G is a directed acyclic graph if and only if G has a node with no incoming edges.
True \square False \boxtimes A DFS tree T starting from node s in an undirected graph G is sometimes a directed ayclic graph that is not a tree.
(c) Undirected Graphs (8 points)
True \square False \boxtimes Suppose $G = (V, E)$ is an undirected, connected graph in which all vertices have even degree. Then G is bipartite.
True \Box False \boxtimes G is a bipartite graph if and only if G has no triangles (i.e., no three nodes are a clique).
True \square False \boxtimes Suppose a weighted undirected graph G has a cycle C , and there is an edge e that is the unique least-cost edge in C . Then e is in every MST for G .
True False If all edge lengths in an undirected graph G are a constant $c>0$, then for every source vertex s in G , a shortest path tree from s is the same as a BFS tree starting from s .
(d) Longest Path Problem (4 points) In the longest path problem, we're given a weighted directed graph $G = (V, E, \ell)$, and a source $s \in V$, and we're asked to find the longest path from s to every vertex in G . In general, it's not known whether there is an efficient algorithm to solve the Longest Path problem. If we restrict G to be acyclic, however, this problem can be solved in polynomial time. Give an efficient algorithm for finding the Longest Paths from s in a weighted directed acyclic graph G . (Hint: no incoming edges)
Sort the DAG into a topological ordering then start at
set {5} and always append the longust egge starting at. {5}
until no V are left to add. At any point in exec. keep an
arkan of edges taken, at any point Pu is longest path to u.
Where P_0 is a backmards traversal of array to S , (e) Hamiltonian Path (4 points) A Hamiltonian path is a path that visits all nodes in a graph. Explain how, given a directed acyclic graph G , it is possible to determine in time $O(V+E)$ whether G has a Hamiltonian path.
turn DAG into topological ordering, start at V, and O(V, E)(page 103) travel along topo-order, adding encountersed rodes int
F if ut end F=E then there is a
hamiltorian putl