Mid-term. February 24, 2017

(CS180: Algorithms and Complexity
Winter 2017

Guidelines:

The exam is closed book and closed notes. Do not open the exam until instructed to do so.
Write your solutions clearly and when asked to do so, provide complete proofs.

Unless told otherwise you may use results and algorithms we proved in class without proofs
or complete details as long as you state what you are using.

I recommend taking a quick look at all the questions first and then deciding what order
to tackle to them in. Even if you don’t solve the problems fully, attempts that show some
understanding of the questions and relevant topics will get reasonable partial credit.

You can use extra sheets for scratch work, but try to use the white space (it should be more
than enough) on the exam sheets for your final solutions. -

Most importantly, make sure you adhere to the policies for academic honesty set out on the
course webpage. The policies will be enforced strictly and any cheating reported.

Problem | Points | Maximum
1

s o] B
S0 TSN N PR BN §

Total 22

Nome | Zhauyond X
UID | /0463928
Section | | B

1 Problem

The answers to the following should fit in the white space below the question.

1. Write down Kruskal’s algorithm. It is sufficient to write down the main while loop and the
rule describing how the algorithm proceeds. [1 point]

© st TP ReE
© ror e ede 2€R
> Plek the edpe v enith the least wepht
> IF %@WTV%wﬁmaw@WT
adil e T

2 remove € oo R
® RerueN T

2. State the cut property we used in class to analyze Kruskal’s and Prim’s algorithms. [1 point]
ol e cges acirss e sme ok,
the edge with the Ut welyhe /gt &2 57 the mmmns
W/}ﬂ;{ e of the grapl,

3. Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph G,
with edge costs that are all positive and distinct. Let 7" be a minimum spanning tree for this
instance. Now suppose we replace each edge cost ¢, by its square, ¢2, thereby creating a new
instance of the problem with the same graph but different costs.

Trwlse: T must still be a minimum spanning tree for this new instance. [1 point]
| e |
Smee G >0, Gro . f GG, thar G750
Thonfre | the loage -weigieteol eolpes across guery cax resmdam the o,
Therefre . T remewns Lhe sarre,

4.

[

Consider the weighted interval scheduling problem where we are given n jobs as input with the
i’th job having start time s,;, finish time f;, and value v;. (Thus, the input to the problem is
n triples (s1, f1,01), ..., (Sn, fn.vn).) Recall that our goal is to find the set of non-conflicting
jobs with the highest possible total value. Consider the following greedy algorithm for the
question:
(a) Set A=0, R={1,2,...,n}.
(b) While R # 0:
i. Pick job i € R with highest v;/f; (value to finish time ratio) and add 7 to A.
ii. Remove ¢ and all jobs that conflict with ¢ from R.
(c) Return A.
True or false: A achieves the highest possible total value. If true, provide a brief explanation.
If false, provide a counterexample. [2 points]

pA
Vi/fi= 1/

i
e

conmzareXon ple : !4 = Gz 4l2 = 2
' Vo/Fs = 4/
0t 2 2 3/7[} g

C/f s Vslh ST,

Bﬁ%d on the mioﬂfl%ﬁ N4 i< 7%2 and the T valig |5 4
winte e optimad selwbin showd b /bél-ffobB > fohd bt 3 5

. You have n items with the i’th item having weight w;. You also have a knapsack with total

weight capacity W (i.e., it can safely hold items whose total weight is at most W). Describe
an algorithm for picking a largest possible subset of items that can be placed safely in the
knapsack. That is, describe an algorithm to find a subset S C {1,2,...,n} of maximum
possible size such that 3, qw; < W. For full-credit, your algorithm should run in time

O(nlogn). You don’t have to prove correctness or analyze the time complexity of the algoritm.
[2 points]

[Hint: One approach is to give a greedy algorit

MWWW

® e w-W, NI, 8

® While wp N 3 not evply
> prk the liphtest Pfem\/%w 02013
<> f we < W
pdd W S
= fmore [ﬁ«wy; AN
7 W= w-wi

2 Problem

Suppose you have a weighted undirected graph G = (V, E') where all the weights are distinct. Prove
that if an edge e is part of a cycle C and has weight more than every other edge in the cycle, then
e cannot be part of the minimum spanning tree in G. [3 points]

[Hint: Assume that the statement is false for the sake of contradiction and let T' being a MST
that contains the edge e. Arrive at a contradiction by a swapping argument as we did in class for
proving the cut property.}

AgWMsWrzﬁ/mMa?th

suppo 0 cmects vOrrEs V. ordl U , ,
Than due o Kruskal's Agorthm , some dge €71 oo
st be oxctuded o T WW%@/WOMMW&
eyl T

& md o are toth g AL e sae K8,

S0 we cm Kplac mé/f/“/"fﬂ”" e
mephwé ﬁ/ J. sma e’ < We , fhf/tvm::’“y
of the e ST wosld tu srader shan e MST
bt contraotints Lhe Pypothess,

S hurefire | s assunprin bas & Lo folse.

Loluich peams & st et be pn T

3 Problem

Give a dynamic programming algorithm for the following version of knapsack where you have three
copies of each item. There are n types of items with weights wy, ..., w, respectively and value
vy, ..., v, respectively and you have three copies of each item. Suppose you have a knapsack of
total weight capacity W. We a say configuration (ai1,...,ay) is safe if 0 < a; < 3 and ajw; +
agwa + ...+ apwy, < W (ie., it is safe to pack a; copies of item 1, ay copies of item 2, ..., ap copies
of item n into the knapsack). The value of a configuration is the total value of the items in the
configuration: for a configuration (ay,...,an), its value is viay + veas + -+ + vndn.

Give an algorithm which given the numbers w1, ..., wy, v1,...,0n, W as input computes the
maximum value achievable over all safe configurations. For full-credit it is sufficient to give a correct
algorithm for the problem which runs in time O(n¥) and it is not required to prove correctness or
analyze the time-complexity of the algorithm. You must provide full description of the algorithm.
[4 points]

e OFT(cC, W) regltsam the nroximum toted vokeee of WS,::Z
7547?47 ot s ./,:),n--,z\ (2 coplth each) with a #

(Me/aylix W'é@mg .
et MEe3 a,ff 2N prmtrX afrogs AVZ% e yodwe OPT (E100)
//sz'/wj /
/4[?0}\’7/%77; Conpuie - OPT
O create om array MLus -, h, l,y...,Wj)

& [nitiowsze MLO, WI=0 eV wEL2, W

M. 07=0 V i=02... 1
o @ A A R
R ¢=1.2,..., n
| FoR w=12,.., W

I .1“,..1 o) ["/‘V’i{:é’i/ WE "?Iéﬁé’t‘zﬁ
S Wi 7w [L"l/“a
E/)U/WJ’M ELSE mIc,wl = max Li-t, w-w;JI+ V¢ J Q=7

MT (-1, w37 + 2; v oG-

sz, Ww-wid]+ 3y, W A:=3

f

reuyTenL
relottion

© Outpne MTn, W1

10

4 Problem

You are given two arrays of integers X = [z[0], z[1], ..., z[m]] and Y = [y[0],y[1], ..., y[n]] as input.
For two subsequences of X,V of the same length, i.e., sequences of indices 0 <17 <o < ... <ip <
moand 0 < jy < ja < ...< jr <n, the value of the subsequences is defined as

k 1

2 TR =

f=1

Give an algorithm that given X,V as input computes the maximum possible value achievable over
all subsequences. For full-credit, your algorithm should run in time O(mn) (ignoring the cost
of arithmetic, i.e., adding numbers). You don’t have to prove correctness or analyze the time-

complexity of the algorithm. [4 points]

Example: X = [1,4,2,5], Y = [1,2,10,4, 100]. Here, if you look at subsequences z[0], z[2], z[3]
and y[0], y[1], ¥[3] you get value 1/1+1/1+1/2 = 2.5. Whereas, if look at subsequences z[0}, [1], z[2]
and y[0], y[1], y[2], y[3], you get value 1/1+1/3+1/9+ 1/2 ~ 1.9444. So the first subsequence has

better value. Your goal is to find the best possible value achievable over all subsequences.

3]

[Hint: Create subproblems like we did for edit-distance in class and develop the appropriate

recurrence.]

B calle st we oo 75 o ® adign Xomd Y (murt Hants #o) omd)
wad Xo — X1 X2 X3 X

Y)W’N Z/\ Xo, Xt X>)CJXQ
€ ' 7
74" >/0/)/I/yhy&/)/l/ 4 >/a }// y)—-— —)/5)’a
e ot Three fb‘)’é/'é/‘t?W A o park
Xol | we motnde botH4 X/‘,}//- #o the cabulotron

Y7
A

E;m 77/1»0/‘6)((‘
o we gaere Vp
[=

7W€/ NW re(guhknl i ~}4 - | raSpyali -, b’l (21
l'r[YUa]')’Z'ﬁJ(+ OPT (a-1,0-1) 1%,
0;’7{01 b/ =z MAX =
OPT(Q’{/ b) _
opPT(6, b=1))_/,
WM—MM/}WW @f_
O e am ary M2,y 120 1]
Mlab] stoes OPT(4:4) |
© Inbasz Mool = KRR T |
11

@ ;O/Q a70///.../ v
FOR b=0l, -y n

compute M2, b3 psmy Lhe recsronce relarrm.
@ Outpur MM

12

5 Problem

Consider the following variant of the RNA sequencing question. Given a sequence X = (r,...,T,),
a set of pairs M = {(i1,71), (i2,52), .- -+ (im, Jm)} 18 an allowed set of pairs if the following hold:

1. Each index appears in at most one pair in M (i.e., no repetitions).

2. Bach pair is one of {G,C} or {A,U}. That is, for all 1 < p < m, {z;,,2;,} is one of {G, C'}
or {A,U}.
3. No sharp edges: For all pairs (¢,7) € M, 4 <j—4.
4. No crossing edges: If pairs (i,7), (k,£) € M, then we cannot have i < k < j < /.
(These are the same rules as we worked with in class.)

The stability of an allowed set of pairs M is given by the following formula:

m

stability(M) = _(j, —ip)”.

p=1

That is, the stability of the collection of pairs is the sum of squares of the number of characters

between each pair. Give an efficient algorithm that given a sequence X = (z1,...,1,) computes

the maximum possible stability(M) over all feasible sets of pairs M. For fhﬂ—cved;t your algorithm

should run in O(n%) time. You do not have to prove correctness or analyze the time complexity of

the algorithm. [4 points] /___:\
« et eO—O— O —O—CO—0—0—0-0—0— -~ -

L S 7 7 ‘ ‘
Gupposk orT/ ;//) rép/?;ewﬁ' PIAX PIAR /‘70{5/‘5& S/aéﬁ’/}? over 4 ﬁmn74]
on element MTiy T of an a2y tolols ()97(5//)

réousrenid iWU'ﬂ .
(oPT(b‘,uj-—/) //// 15 not parred

0P7(£’/j) s AX) ‘
mAxX Mmﬂ(\f : (j-t)+ OPT(v, t-1)+ OPTlt-r//j—/)
\M/f V) s ,mrredfvt
(m;t‘c thot ‘b</~4~
ool that ft,/S 5 a lgal fa,y_)
éamfme,, 5’7%{5/%‘7{
O creake arrey ML12,.,0 10 n]
G mitialize MTC,iJ=0
MLE, c+#I=0
M, [e2]=0
ML, (r3]=0
. MTér (4] =0 13
@ FOR U= //2/“_/17,;
FOR k = \S~J 6/..., /7"‘
> J= itk
-2 MNie, - ;
@® Owiont MLt 07 i 3 “sig the recrence reletim

14

