
Name(last, first): ___________________

 1

U C L A Computer Science Department

CS 180 Algorithms & Complexity ID : _____________

Midterm Total Time: 1.5 hours November 2, 2020

Each problem has 20 points .

All algorithms should be described in bullet format (with justification/proof).

You cannot quote any time complexity proofs we have done in class: you need to

prove it yourself.

Problem 1: Describe the Breadth First Search algorithm in a DAG. Prove its correctness.

Analyze its complexity.

Name(last, first): ___________________

 2

Problem 2: Consider a set of intervals/tasks. Each task has a start and an end time and

each processor can handle one task at any given time. If tasks do not overlap, then we can

use one processor to schedule them all. If they do overlap, we need more processors to

schedule them. For example, in the figure below we need two processors to schedule all

four intervals/tasks. A. Design an algorithm that finds the minimum number of processors

needed to schedule all intervals/tasks. B. Analyze the time complexity of your algorithm.

C. Prove the correctness of your algorithm.

 Processor 1 ---------------------- ----------------------------

 Processor 2 ------------------------------ ----------------------------

Name(last, first): ___________________

 3

Problem 3: Design an algorithm that decides if a connected undirected graph is 2-

colorable and finds a 2-coloring if it is indeed 2-colorable. Prove the correctness of your

algorithms and analyzes its time complexity.

Name(last, first): ___________________

 4

Problem 4: Apply the DFS algorithm to the graph shown below (step by step) starting

from vertex zero (0), and show the final DFS Tree. (You can ignore the weight on the

edges.)

Name(last, first): ___________________

 5

Problem 5: It takes n-1 comparisons to find the minimum number in a given list of

integers L = (x1, x2, x3, ….). Similarly, it takes n-1 comparisons to find the maximum.

Therefore, it is trivial to design an algorithm that finds both the minimum and the

maximum with about 2n-2 comparisons. Design an algorithm to find both the minimum

and the maximum in a list using about 3n/2 comparisons.

