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TOTAL POINTS

98 /100

QUESTION 1

1problem 120/20
v - 0 pts Correct

QUESTION 2

2 problem 2 20/ 20
v - 0 pts Correct

QUESTION 3
3 problem 3 20/20

+ 3 pts basic understanding of the question
v + 5 pts basic understanding of the question is
correct
v +10 pts Correct algorithm
+ 8 pts Partially correct algorithm
+ 3 pts Partially correct algorithm
v + 5 pts runtime analysis and justification
+ 0 pts wrong approach
+ 0 pts no answer
+ 3 pts Some clues were right but the overal

approach was not correct

QUESTION 4
4 problem 4 18/ 20

+ 5 pts Complete proof of correctness
v + 5 pts Complete complexity analysis
v + 10 pts Correct algorithm
+ 3 pts Correct complexity with analysis error
v + 3 pts Proof of correctness had minor errors
+ 8 pts Good algorithm, minor errors
+ 5 pts Incomplete algorithm
+ 0 pts Algorithm uses non constant storage
+ 0 pts Complexity analysis is wrong
+ 0 pts Proof of correctness is wrong

+ 0 pts Algorithm is wrong
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QUESTION 5

5 problem 5 20/ 20
v - 0 pts Correct
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U C L A Compnuter Science Department

- CS 180 Algorithms- & Compléxity Ip : 30510110
Midterm . Total Time: 1.5 hours November 6, 2019
Each problem has 20 points . |

All algorithm should be described in English, bullet-by-bullet (with justification)
~ You cannot quote any time complexity proofs we have done in class: you need to
- prove it yourself.

Problem 1: Describe the topological sort algorithm in a DAG. Prove its correctness.
Analyze its complexity. ' -
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Problem 2: Run Merge sort on the following set of numbers. Show every step. Analyze
the time complexity of merge sort on a set of n numbers (show every step)
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Problem 3: Suppose that you are given an algorithm as a blackbox. You cannot see how
it is designed. The blackbox has the following properties: If you input any sequence of

“ real numbers, and an integer k, the algorithm will answer YES or NO indicating whether
there is a subset of the numbers whose sum is exactly k. Show how to use this blackbox
to find the subset whose sum is k , if it exists.

You should use the blackbox O(n) times (where n is the size of the input sequence).
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Problem 4: You have been commissioned to write a program for the next version of
electronic voting software for UCLA. The input will be the number of candidates, d, and
an array votes of size v holding the votes in the order they were cast where each vote is
an integer from 1 to d. The goal is to determine if there is a candidate with a maj ority of
the votes (more than half the votes) . You can use only a constant number of extra storage

(note that v and d are not constants).Prove the correctness of your algorithm and analyze
its time complexity.
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Problem 5: Consider a sorted list of n integers and given integer L.. We want to find two
numbers in the list whose sum is equal to L. Design an efficient algorithm for solving this -
problem (note: an O(n?) algorithm would be trivial by considering all possible pairs).
Justify your answer and analyze its time complexity.
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