
CS180 Midterm Exam Solutions

1. (20 pt) Determine whether the following statements are true or false.

(a) (5 pt) 2n = Θ(3n)

(b) (5 pt) Suppose G is a connected, undirected graph. If removing an edge disconnects the graph, then
the edge is a tree edge in the DFS tree.

(c) (5 pt) Suppose G is a DAG and s is the first node in the topological ordering, t is the last node in the
topological ordering, then there is always a path from s to t.

(d) (5 pt) For any undirected connected graph G, there exists at least two nodes such that removing the
nodes won’t disconnect the graph.

Solutions:

(a) False

(b) True

(c) False

(d) True (we can build a spanning tree using BFS/DFS, then removing leaf nodes won’t disconnect the
graph. And each tree has at least 2 leaf nodes).



2. (20 pt) As we learned in the class, a min-heap is useful when we are interested in the minimum value of
set of numbers. Now, instead of the min, we are interesting in the K-th smallest value.

(a) (10 pt) Please design a data structure to allow the following two operations: push (insert a new
number) and find_Kmin (return the value of the K-th smallest number without removing it). Both
operations should be done in O(log K) time.

(b) (10 pt) In addition to push and find_Kmin, now we also want to support the pop operation to
return and remove the K-th smallest element. Please design a data structure to support these three
operations, and each operation should take O(log n) time with n being the size of the current set.

Solution: (a) use a max heap A to maintain the smallest K elements. When pushing , compare with the
max of A to determine whether we want to add the new element to the heap. (b) In addition to A, also
using another min heap B to store the rest of the elements. When popping an element, moving the max
element in B to A.



3. (20 pt) For a stable marriage problem with n men and n women, let m1, m2 be two of the men, w1, w2 be
two of the women. Suppose m1’s preference list is w1 > w2 > . . . ; m2’s preference list is w2 > w1 > . . . ;
w1’s preference list is m2 > m1 > . . . ; w2’s preference list is m1 > m2 > . . . (we only know the favorite and
the second favorite of each of these four persons).

(a) (10 pt) Show that in every stable matching, m1, m2 are matched to w1, w2 (which means we either
have (w1, m1), (w2, m2) or (w1, m2), (w2, m1) in a stable matching).

(b) (10 pt) For any even n, construct an instance of stable matching problem (i.e., provide a set of prefer-
ences) with at least 2n/2 stable matchings. Justify your claim.

Solution: (a) Contradiction: If any ends up paired with someone else outside of the small group, they’d
want to swap back into the group, and so would the other gender that also ends up outside of the group.

(b) repeat the same pattern for wi , wi+1, mi , mi+1 for i = 1, 3,5, . . . , n− 1, where everyone in each of these
groups prefers each other first, in the same way as in the statement.
I.e. m2i+1 prefers w2i+1 > w2i+2 > . . . ; m2i+2 prefers w2i+2 > w2i+1 > . . . ; w2i+1 prefers m2i+2 > m2i+1 > . . . ;
w2i+2 prefers m2i+1 > m2i+2 > . . . .
For every 2 men out of the n, there are 2 independent possibilities, for 2n/2 total possibilities.



4. (20 pt) Indiana Jones is stuck in the Emperor’s Tomb and needs to find a way out. In front of him, there
are n consecutive doors, each door is behind the previous, and he needs to open all the doors to get out. In
the control room, there are n switches where each switch connects to a different door but he doesn’t know
which switch controls which door. Each switch can either be in an up or down position. but unfortunately,
for some doors the “up” position will open the door while for others the “down” position will open the
door. He needs to place all the n switches in the correct configuration to open all the doors. In order to
find the correct configuration, each time Indiana Jones can walk to the control room, set the switches to
any configuration, and walk back to check which is the first closed door (since the doors are consecutive,
he cannot observe the status of doors behind the first closed one). Design an algorithm to find the correct
configuration to open all the doors within O(n log n) trials.

Figure 1: Illustration of Problem 3. In this case there are n= 4 doors, and 4 switches controlling those doors. He
can only see the state of doors 1 and 2, not 3 or 4

Solution: Find the controller for each door one-by-one. For each door (say door i), use binary search:
divide the switches into 2 groups A, B; try two configurations (a) Up for all the switches (b) Up for the first
group and down for the second group. If the first door is opened for both cases then the switch for door i
should be in group A; otherwise it should be in group B. We can thus reduce the candidate set by half, and
doing this recursively can find the switch for door i in O(log n) trials. There are totally n doors so O(n log n)
trials.



5. (20 pt) There’s a 1D segment and you want to travel from west-most point (s) to the east-most point (t).
There are n teleporters on this 1D segment and each teleporter has two endpoints. Whenever you reach one
endpoint, it will teleport you to another endpoint (it may transport you from east to west or west to east,
depending on which endpoint you reach). All the endpoints are located between s and t and none of the
endpoints are located at the same position. We assume you must always move eastward on the segment.

Figure 2: An example for Problem 5. We are given an input with 4 teleporters with endpoints a1, a2; b1, b2; c1, c2,
d1, d2. Starting from s, you should keep moving to the right, so the path will be s (walk to) a1 (teleport to) a2
(walk to) c1 (teleport to) c2 (walk to) b2 (teleport to) b1 (walk to) a2 (teleport to) a1 (walk to) b1 (teleport to)
b2 (walk to) t, and the path has reward t since you are teleported 5 times.

(a) Prove that no matter how those teleporters are placed, you will always reach the t. (Hint: you can
view this as a graph problem, where each segment is a node, and each one has an edge pointing to
the next segment)

(b) Now you are allowed to add another set of K teleporters (each with two endpoints). How could you
place those endpoints to maximize the number of times you get teleported in your trip from left-most
point to right-most point? Given the input of the locations of existing teleporters and the number K ,
design an algorithm to solve this problem in O(n log n). (You can assume K < n.)

Solution:

(a) If we view each segment as a node, then this will be a graph with 2n + 1 nodes. Let s denote the
first segment and t denote the last segment, then we want to know whether there’s a path from s to
t. In this graph, every node has an incoming and an outgoing edge, except s, t where s has only one
outgoing edge and t has one incoming edge. We start from s and keep going to the next node. We
can’t reach the same node twice since each node has only one incoming edge. Therefore the path will
end at t which has no outgoing edge.

(b) The graph we construct to represent the teleportation path is composed of a path from s to t, and
possibly several loops. Adding an teleporter can merge two loops or merge a loop into the path.
Therefore, we can greedily merge the largest loop into the path when adding each new teleporter.
(After all loops are merged you can just add a teleporter with both endpoints on segment. This will
create a self-contained segment which is a single disconnected node with a self loop in our directed
graph, but you can merge that back into the our path with another teleporter just like how we merged
previous loops. In practice this means adding (x1, y1, x2, y2) on any segment for every 2 leftover
teleporters, and (x1, x2) if there’s an odd one left out.) Solving this problem only requires finding
all the disconnected components and connecting them all. Connecting the components is a constant
time operation (it can be done on any arbitrary part of the s-t path and the loop), but finding which
elements are disconnected (and how big each loop is) requires traversal over all the nodes, which is
O(n). We loosened the requirement later to O(n log n) because creating the graph itself might require



some type of sorting, depending on how the input is presented in the first place. We also later added
that K < n.

(c) GRADER NOTES: We didn’t precisely define exactly how the input data is presented to them, what
the format / type of data is, etc. So I would let them define it however they want. Just as long as
their algorithm and analysis gets the general idea and doesn’t have any major bugs, I would give them
mostly full credit. Also keep in mind that the wording for 5b seemed to confuse some people, so I
would be forgiving in taking off points for misunderstandings there as long as they give reasonable
algorithms that could be extended to this case. Also figuring out how to add teleporters once you’ve
merged all the loops is a little trickier than we originally intended, so I would only deduct a small
amount if they didn’t manage to figure that out. Merging the loops is the most important concept
here.


