CS180 Midterm Exam Solutions

- 1. For each of the following problems answer True or False and briefly justify you answer.
	- (a) (5pt) For a connected and undirected graph *G*, if removing edge *e* disconnects the graph, then *e* is a tree edge in DFS of G.
	- (b) (5pt) For a DAG *G*, if there is only one node with no incoming edge, then there exists only one topological ordering.
	- (c) (5pt) For the stable matching problem, if there is a man m_1 and woman w_1 such that w_1 has the lowest ranking in m_1 's preference list and m_1 has the lowest ranking in w_1 's preference list, then any stable matching will not contain the pair (m_1, w_1) .
	- (d) (5pt) If we run DFS on a DAG and node *u* is the first leaf node in the DFS tree, then *u* has no outgoing edge.

Solution:

- (a) True. All the non-tree edges are back-edge in DFS which means the non-tree edges are involved in some cycle. Moreover, since e is a cut for the graph G, we know DFS will have to pass it when traversing the graph.
- (b) False. Example constraints (a,b) (a,c) , (c,d) , (b,d) . Clearly, there could be 2 ordering. (a,b,c,d) and (a,c,b,d) .
- (c) False. As an example, consider the following ranking: m_1 and m_2 prefer w_2 to w_1 . w_1 and w_2 both prefer m_2 to m_1 . A stable match will then be (w_1, m_1) & (w_2, m_2) .
- (d) True. *u* can only have back edge to its ancestor, and if back edge exists the graph will not be a DAG. Therefore *u* has no outgoing edge.
- 2. (10pt) Take the following list of functions and arrange them in ascending order of growth rate. That is, if function $g(n)$ immediately follows function $f(n)$ in your list, then it should be the case that $f(n)$ is $O(g(n))$.
	- $f_1(n) = 3n^3$
	- $f_2(n) = n(\log n)^{100}$
	- $f_3(n) = 2^{n \log n}$
	- $f_4(n) = 2$ \sqrt{n}
	- $f_5(n) = 2^{0.8 \log n}$

Solution: f_5 , f_2 , f_1 , f_4 , f_3 (totally 10 pairs, each pair 1 point)

 $f_5(n) = 2^{0.8 \log n} = 2^{0.8 \frac{\log 2^n}{\log_2 e}} = n^{\frac{0.8}{\log_2 e}} = O(n(\log n)^{100}) = O(f_2(n))$ (since $\frac{0.8}{\log_2 e} < 1$).

Let $z = \log n$, by (2.9), we have $(\log n)^{100} = z^{100} = O(e^z) = O(n)$. Hence, we can get $f_2(n) = n \cdot (\log n)^{100} =$ $O(3n^2 \cdot n) = O(f_1(n)).$

Let
$$
z = \sqrt{n}
$$
, $f_1(z) = 3z^6$, $f_4(z) = 2^z$. By (2.9), we have $f_1(n) = O(f_4(n))$.

Since $\sqrt{n} = O(n \log n)$, we have $f_4(n) = O(f_3(n))$.

3. (20pt) For a DAG with *n* nodes and *m* edges (and assume $m \ge n$), design an algorithm to test if there is a path that visits every node exactly once. The algorithm should run in $O(m)$ time.

Solution: The algorithm is given by the following pseudo-code.

Obtain a topological ordering of the vertices of *G* as u_1, \ldots, u_n , using topological sort. For $i = 1, ..., n - 1$: $\text{If } (u_i, u_{i+1}) \notin E(G)$: return no return yes

Note: there are valid proofs other than the one given here. Also, a less rigorous argument would suffice to get full credit, since we only ask for a justification.

Proof of correctness: Since *G* is a DAG, the first step of the algorithm always returns a valid topological ordering, u_1, \ldots, u_n . Since u_1, \ldots, u_n is a topological ordering, we know that if $(u_i, u_j) \in E(G)$, then $i < j$. Thus, for any path $p = (u_{t_1}, \ldots, u_{t_k})$ of length *k*, we must have $t_1 < t_2 < \cdots < t_k$. Thus, a path *p* contains every vertex if and only if $p = (u_1, \ldots, u_n)$. Therefore, *G* has a path containing every vertex if and only if $(u_i, u_{i+1}) \in E(G)$ for every $i \in \{1, ..., n-1\}.$

Runtime analysis: For a DAG *G* on *n* nodes and *m* edges, topological sort runs in time *O*(*n* + *m*). Our algorithm first runs topological sort and then checks whether *n* different edges exist in the graph. Since $m > n$, the total runtime of our algorithm is thus $O(n + m) + O(n) = O(m)$.

4. (20pt) Given an array *A* of *n* distinct integers and assume they are sorted in increasing order. Design an algorithm to find whether there is an index *i* with $A[i] = i$. The algorithm should run in $O(\log n)$ time.

5. (30pt) There are several flying saucers on the sky to attack the Earth. For simplicity, we assume Earth surface is 1-D and the flying saucers are on the sky, as shown in Figure [1.](#page-2-0) We know there are *n* flying saucers and each of them occupies the open interval (L_i, R_i) (assume L_i, R_i are integers). To destroy those flying saucers, we are going to fire the laser canon at some locations. If the laser canon is fired at position *x* to the sky, it will destroy all the saucers that intersects with this vertical line, i.e., all the flying saucers with $x \in (L_i, R_i)$ will be destroyed, as illustrated in Figure [1.](#page-2-0) However, firing the laser canon is expensive so we want to find a way to destroy all the flying saucers using as few laser canons as possible.

Mathematically, given *n* intervals $\{(L_i, R_i) | i = 1, \ldots, n\}$, our goal is to find a minimum set of numbers $X = \{x_1, \ldots, x_k\}$ such that for every interval *i*, there is at least one x_j in *X* contained in the interval (L_i $x_j < R_i$). Give a linear time algorithm to solve this problem, and prove the correctness of your algorithm.

Figure 1: In this example, there are 6 flying saucers with $(L_1, R_1) = (0, 2)$, $(L_2, R_2) = (2, 7)$, $(L_3, R_3) = (1, 3)$, $(L_4, R_4) = (6, 9)$, $(L_5, R_5) = (0, 4)$, $(L_6, R_6) = (8, 9)$. We need at least 3 laser canons to destroy all of them, and 1.5, 3.5, 8.5 is a set of valid positions of these canons.

Time complexity: Sorting takes $\mathcal{O}(n \log n)$, the while loop takes $\mathcal{O}(n)$.

Reasoning: Suppose otherwise, there is a better solution S^* that fires fewer beams. Consider the positions of the left-most beams of both algorithms, *x* and *x*^{*}; we must have $x > x$ ^{*} − 0.5, otherwise, *x*^{*} will not be able to destroy the left-most saucer (located at *K*[0]). After that, the remaining saucers of our algorithm is a subset of optimal solution. But optimal solution uses fewer beams than our solution, which leads to a contradiction.