
CS180 Midterm Exam Solutions

1. For each of the following problems answer True or False and briefly justify you answer.

(a) (5pt) For a connected and undirected graph G, if removing edge e disconnects the graph, then e is a
tree edge in DFS of G.

(b) (5pt) For a DAG G, if there is only one node with no incoming edge, then there exists only one topo-
logical ordering.

(c) (5pt) For the stable matching problem, if there is a man m1 and woman w1 such that w1 has the lowest
ranking in m1’s preference list and m1 has the lowest ranking in w1’s preference list, then any stable
matching will not contain the pair (m1, w1).

(d) (5pt) If we run DFS on a DAG and node u is the first leaf node in the DFS tree, then u has no outgoing
edge.

Solution:

(a) True. All the non-tree edges are back-edge in DFS which means the non-tree edges are involved in
some cycle. Moreover, since e is a cut for the graph G, we know DFS will have to pass it when traversing
the graph.

(b) False. Example constraints (a,b) (a,c), (c,d), (b,d). Clearly, there could be 2 ordering. (a,b,c,d) and
(a,c,b,d).

(c) False. As an example, consider the following ranking: m1 and m2 prefer w2 to w1. w1 and w2 both
prefer m2 to m1. A stable match will then be (w1, m1)&(w2, m2).

(d) True. u can only have back edge to its ancestor, and if back edge exists the graph will not be a DAG.
Therefore u has no outgoing edge.

2. (10pt) Take the following list of functions and arrange them in ascending order of growth rate. That is, if
function g(n) immediately follows function f (n) in your list, then it should be the case that f (n) is O(g(n)).

• f1(n) = 3n3

• f2(n) = n(log n)100

• f3(n) = 2n log n

• f4(n) = 2
p

n

• f5(n) = 20.8 log n

Solution: f5, f2, f1, f4, f3 (totally 10 pairs, each pair 1 point)

f5(n) = 20.8 log n = 20.8 log2 n
log2 e = n

0.8
log2 e = O(n(log n)100) = O( f2(n)) (since 0.8

log2 e < 1).

Let z = log n, by (2.9), we have (log n)100 = z100 = O(ez) = O(n). Hence, we can get f2(n) = n · (log n)100 =
O(3n2 · n) = O( f1(n)).

Let z =
p

n, f1(z) = 3z6, f4(z) = 2z . By (2.9), we have f1(n) = O( f4(n)).

Since
p

n= O(n log n), we have f4(n) = O( f3(n)).

3. (20pt) For a DAG with n nodes and m edges (and assume m ≥ n), design an algorithm to test if there is a
path that visits every node exactly once. The algorithm should run in O(m) time.



Solution: The algorithm is given by the following pseudo-code.

Obtain a topological ordering of the vertices of G as u1, . . . , un, using topological sort.
For i = 1, . . . , n− 1:

If (ui , ui+1) /∈ E(G):
return no

return yes

Note: there are valid proofs other than the one given here. Also, a less rigorous argument would suffice to get
full credit, since we only ask for a justification.

Proof of correctness: Since G is a DAG, the first step of the algorithm always returns a valid topological
ordering, u1, . . . , un. Since u1, . . . , un is a topological ordering, we know that if (ui , u j) ∈ E(G), then i < j.
Thus, for any path p = (ut1

, . . . , utk
) of length k, we must have t1 < t2 < · · · < tk. Thus, a path p contains

every vertex if and only if p = (u1, . . . , un). Therefore, G has a path containing every vertex if and only if
(ui , ui+1) ∈ E(G) for every i ∈ {1, . . . , n− 1}.
Runtime analysis: For a DAG G on n nodes and m edges, topological sort runs in time O(n + m). Our
algorithm first runs topological sort and then checks whether n different edges exist in the graph. Since
m> n, the total runtime of our algorithm is thus O(n+m) +O(n) = O(m).

4. (20pt) Given an array A of n distinct integers and assume they are sorted in increasing order. Design an
algorithm to find whether there is an index i with A[i] = i. The algorithm should run in O(log n) time.

Solution:

find_index(int start, int end, int A[])
if end<start:

return 0
mid = b(start+ end)/2c
if mid - A[mid]=0:

return 1
if mid - A[mid]<0:

return find_ind(start, mid-1, A[])
if mid - A[mid]>0:

return find_ind(start+1, mid, A[])

find_index(int start, int end, int A[])
if end<start:

return 0
while (end >= start):

mid = b(start+ end)/2c
if mid - A[mid]=0:

return 1
if mid - A[mid]<0:

end← mid-1
if mid - A[mid]>0:

start← mid+1
return 0

5. (30pt) There are several flying saucers on the sky to attack the Earth. For simplicity, we assume Earth
surface is 1-D and the flying saucers are on the sky, as shown in Figure 1. We know there are n flying
saucers and each of them occupies the open interval (Li , Ri) (assume Li , Ri are integers). To destroy those
flying saucers, we are going to fire the laser canon at some locations. If the laser canon is fired at position
x to the sky, it will destroy all the saucers that intersects with this vertical line, i.e., all the flying saucers
with x ∈ (Li , Ri) will be destroyed, as illustrated in Figure 1. However, firing the laser canon is expensive
so we want to find a way to destroy all the flying saucers using as few laser canons as possible.

Mathematically, given n intervals {(Li , Ri) | i = 1, . . . , n}, our goal is to find a minimum set of numbers
X = {x1, . . . , xk} such that for every interval i, there is at least one x j in X contained in the interval (Li <
x j < Ri). Give a linear time algorithm to solve this problem, and prove the correctness of your algorithm.

Algorithm:

Define K = [(Li , Ri)]i=1,...,n
Ks = sor ted(K , ke y = Ri , ascending = True)
While not K.empty():

Li , Ri=K[0]
Fire a laser beam at Ri − 0.5
Remove the destroyed saucers, update K to be the suviving saucers.

End



Figure 1: In this example, there are 6 flying saucers with (L1, R1) = (0, 2), (L2, R2) = (2, 7), (L3, R3) = (1, 3),
(L4, R4) = (6,9), (L5, R5) = (0,4), (L6, R6) = (8,9). We need at least 3 laser canons to destroy all of them, and
1.5,3.5, 8.5 is a set of valid positions of these canons.

Time complexity: Sorting takes O (n log n), the while loop takes O (n).

Reasoning: Suppose otherwise, there is a better solution S∗ that fires fewer beams. Consider the positions
of the left-most beams of both algorithms, x and x∗; we must have x > x∗ − 0.5, otherwise, x∗ will not be
able to destroy the left-most saucer (located at K[0]). After that, the remaining saucers of our algorithm
is a subset of optimal solution. But optimal solution uses fewer beams than our solution, which leads to a
contradiction.


