CS180 Midterm Exam Solutions

1. For each of the following problems answer True or False and briefly justify you answer.

(a) (5pt) For a connected and undirected graph G, if removing edge e disconnects the graph, then e is a
tree edge in DFS of G.

(b) (5pt) For a DAG G, if there is only one node with no incoming edge, then there exists only one topo-
logical ordering.

(c) (5pt) For the stable matching problem, if there is a man m; and woman w; such that w; has the lowest
ranking in m;’s preference list and m; has the lowest ranking in w,’s preference list, then any stable
matching will not contain the pair (m,, w;).

(d) (5pt) If we run DFS on a DAG and node u is the first leaf node in the DFES tree, then u has no outgoing
edge.

Solution:

(a) True. All the non-tree edges are back-edge in DFS which means the non-tree edges are involved in
some cycle. Moreover, since e is a cut for the graph G, we know DFS will have to pass it when traversing
the graph.

(b) False. Example constraints (a,b) (a,c), (c,d), (b,d). Clearly, there could be 2 ordering. (a,b,c,d) and
(a,c,b,d).

(c) False. As an example, consider the following ranking: m; and m, prefer w, to w;. w; and w, both
prefer m, to m;. A stable match will then be (w;, m;)&(w,, m,).

(d) True. u can only have back edge to its ancestor, and if back edge exists the graph will not be a DAG.
Therefore u has no outgoing edge.

2. (10pt) Take the following list of functions and arrange them in ascending order of growth rate. That is, if
function g(n) immediately follows function f (n) in your list, then it should be the case that f (n) is O(g(n)).
o fi(n)=3n®
o fo(n) =n(logn)'®
o fylm) =2
o fi(n)=2"

° fs(n) — 20‘810gn

Solution:  f5, fy, f1, f4, f5 (totally 10 pairs, each pair 1 point)

logy n X
fs(n) = 20-8logn — 208se = phae = 0(n(logn)'%) = 0(f,(n)) (since 2& < 1).

fogy ¢
Let z = logn, by (2.9), we have (logn)!% = 219 = 0(e*) = O(n). Hence, we can get f,(n) = n-(logn)'% =
0(3n*-n) = 0(f;,(n)).
Let z = /1, f1(2) = 32°, fu(z) = 2°. By (2.9), we have f;(n) = O(f4(n)).
Since 4/n = O(nlogn), we have f,(n) = O(f5(n)).

3. (20pt) For a DAG with n nodes and m edges (and assume m > n), design an algorithm to test if there is a
path that visits every node exactly once. The algorithm should run in O(m) time.



Solution: The algorithm is given by the following pseudo-code.

Obtain a topological ordering of the vertices of G as u,, ..., u,, using topological sort.
Fori=1,...,n—1:
If (ug, i) € E(G):
return no
return yes

Note: there are valid proofs other than the one given here. Also, a less rigorous argument would suffice to get
full credit, since we only ask for a justification.

Proof of correctness: Since G is a DAG, the first step of the algorithm always returns a valid topological
ordering, uy,...,u,. Since u;,...,u, is a topological ordering, we know that if (u;,u;) € E(G), theni < j.
Thus, for any path p = (u,,,...,u,,) of length k, we must have t; < t, <--+ < t;. Thus, a path p contains
every vertex if and only if p = (u;,...,u,). Therefore, G has a path containing every vertex if and only if
(u;,ui41) € E(G) for every i € {1,...,n—1}.

Runtime analysis: For a DAG G on n nodes and m edges, topological sort runs in time O(n + m). Our
algorithm first runs topological sort and then checks whether n different edges exist in the graph. Since
m > n, the total runtime of our algorithm is thus O(n + m) + O(n) = O(m).

. (20pt) Given an array A of n distinct integers and assume they are sorted in increasing order. Design an
algorithm to find whether there is an index i with A[i] = i. The algorithm should run in O(logn) time.

find_index(int start, int end, int A[])
if end<start:
return O
while (end >= start):
mid = |(start + end)/2|
if mid - A[mid]=0:
return 1
if mid - A[mid]<O0:
end « mid-1
if mid - A[mid]>0:
start « mid+1
return O

find_index(int start, int end, int A[])

if end<start:

return O

mid = [(start + end)/2|

if mid - A[mid]=0:
Solution: return 1
if mid - A[mid]<0:

return find_ind(start, mid-1, A[])
if mid - A[mid]>0:

return find_ind(start+1, mid, A[])

. (30pt) There are several flying saucers on the sky to attack the Earth. For simplicity, we assume Earth
surface is 1-D and the flying saucers are on the sky, as shown in Figure 1. We know there are n flying
saucers and each of them occupies the open interval (L;,R;) (assume L;,R; are integers). To destroy those
flying saucers, we are going to fire the laser canon at some locations. If the laser canon is fired at position
x to the sky, it will destroy all the saucers that intersects with this vertical line, i.e., all the flying saucers
with x € (L;,R;) will be destroyed, as illustrated in Figure 1. However, firing the laser canon is expensive
so we want to find a way to destroy all the flying saucers using as few laser canons as possible.

Mathematically, given n intervals {(L;,R;) | i = 1,...,n}, our goal is to find a minimum set of numbers

X = {xy,..., X} such that for every interval i, there is at least one x; in X contained in the interval (L; <

x; <R;). Give a linear time algorithm to solve this problem, and prove the correctness of your algorithm.

Define K = [(L;,R;)]i=1,...n
K, =sorted(K,key =R;,ascending = True)
While not K.empty():
Algorithm: L;,R;=K[0]
Fire a laser beam at R; — 0.5
Remove the destroyed saucers, update K to be the suviving saucers.
End




Figure 1: In this example, there are 6 flying saucers with (L;,R;) = (0,2), (L,,R;) = (2,7), (L3,R3) = (1,3),
(L4,R4) =(6,9), (Ls,Rs) = (0,4), (Lg,Rg) = (8,9). We need at least 3 laser canons to destroy all of them, and
1.5,3.5,8.5 is a set of valid positions of these canons.

Time complexity: Sorting takes @(nlogn), the while loop takes &(n).

Reasoning: Suppose otherwise, there is a better solution S* that fires fewer beams. Consider the positions
of the left-most beams of both algorithms, x and x*; we must have x > x* — 0.5, otherwise, x* will not be
able to destroy the left-most saucer (located at K[0]). After that, the remaining saucers of our algorithm
is a subset of optimal solution. But optimal solution uses fewer beams than our solution, which leads to a
contradiction.



