CS180-Spring20 Midterm

Bryan Wong

TOTAL POINTS

99 /100

QUESTION 1 correctness. Need to justify that your algorithm

1T of F20/20
v - 0 pts Correct

returns true if and only if G contains such a path.
- 8 pts Algorithm produces correct output, but with
o incorrect time complexity.
- 10 pts No justification for any of the answers o
- 10 pts Incorrect, but a complete answer is given
- 5 pts Part justification ) o N
- 1 pts Algorithm description needs some additional

- 5 pts a wrong detail
etail.

- 5 pts b wrong

- 5 pts c wrong QUESTION 4

-5 pts d wrong 4 Array 20/ 20

- 7.5 pts missing 3 justifications /-0 pts Correct

- 2.5 pts b justification is wrong - 2 pts no proof of correctness or explanation

QUESTION 2
2 Order of growth 10/10

-1 pts 1incorrect pair.

QUESTION 5

5 Flying saucers 30/30

v - 0 pts Correct

- 2 pts 2 incorrect pairs. - 10 pts no correctness proof

- 3 pts 3 incorrect pairs. - 2 pts hard to read

-4 pts 4 incorrect pairs. - 5 pts no time complexity proof

- 5 pts 5 incorrect pairs. .
P : pai - 2 pts incomplete correctness proof

-6 pts 6 incorrect pairs. - 5 pts wrong time complexity proof

-7pts7i irs. . '
Pts /incorrect pairs - 10 pts incorrect algorithm

- 8 pts 8 incorrect pairs. - 30 pts no answer

-9 pts 9 incorrect pairs. - 5 pts incomplete algorithm

v -
0 pts Correct - O pts late submission

-10 pts 10 incorrect pairs. - 5 pts Not a regious description (or hard to follow)

QUESTION 3 - 0 pts Click here to replace this description.

3DAG 19/ 20
v - 0 pts Correct

- 20 pts No answer

- 1 pts Hard to read

- 2 pts Correct idea, but needs a more formal
algorithm description

- 2 pts No explanation for algorithm's correctness

v -1 pts Needs better explanation for algorithm's

Page 1



CS 180 Midterm

Bryan Wong

May 7, 2020

Question 1

For each of the following problems answer True or False and briefly justify you answer.)

a. For a connected and undirected graph G, if removing edge e disconnects the
graph, then e is a tree edge in DF'S of G.

True. If removing edge e disconnects the graph, then that means there is some node v that
is only connected to the rest of the graph by edge e. In a DFS, all connected nodes are part
of the DFS tree. Since e is the only edge that connects to node v, edge e must be a tree edge
in the DFS of G.

b. For a DAG G, if there is only one node with no incoming edge, then there
exists only one topological ordering.

False, Counterexample:

The pictured DAG has only one node a with no incoming edge, but it has two valid topo-
logical orderings:

abcd

acbd



c. For the stable matching problem, if there is a man m; and woman w; such that
w; has the lowest ranking in m;’s preference list and m; has the lowest ranking
in w,’s preference list, then any stable matching will not contain the pair (my, w;).

False, counterexample:
miq : Wa > Wy
Mo : W > W7
w1 Mo > My
Wy Mo > My

If use the Gale-Shapley algorithm with ms proposing before m;, ms will propose to and be
engaged to ws since wy was previously unmatched. Then, m; will propose to his first choice,
wy. However, wy prefers moy and the proposal fails. m; will then propose to his second choice,
wy, who accepts because she is unmatched. We end up with a stable matching containing
(mq,w;) despite each other being their partner’s lowest ranking.

If we run DFS on a DAG and node u is the first leaf node in the DFS tree, then
u has no outgoing edge.

True. By definition of DFS, the algorithm will follow the first edge out of an arbitrary start-
ing node v and continue until it finds the first leaf node u with a "dead end” where either:
1) It has no outgoing edge

2) It has neighbors, but they have already been explored

In the case of a DAG, case 2 is impossible because this would mean that there is an edge
from u to some node w, where w is on the path from v—wu. This would create a cycle. This
contradicts the fact that the graph is a DAG. Therefore, it is true that u has no outgoing
edge.



1T of F20/20

v - 0 pts Correct
- 10 pts No justification for any of the answers
- 5 pts Part justification
- 5 pts a wrong
- 5 pts b wrong
- 5 pts c wrong
- 5 pts d wrong
- 7.5 pts missing 3 justifications

- 2.5 pts b justification is wrong

Page 4



Question 2

Take the following list of functions and arrange them in ascending order of growth

rate. That is, if function g(n) immediately follows function f(n) in your list, then
it should be the case that f(n) is O(g(n)).

2nlogn
o fi(n) =2v"
° .f5 n) = 20.8logn

We see that f5 has the lowest coefficient of z, and thus grows the slowest. The next largest
coefficient is fy (where the z term dominates the 100log(z) term), followed by f3. logn grows
at a slower rate than /n, so the next function in our list is f;. Of course, v/n grows slower
than nz, so fs5 is the last item in our list.

The final order is as follows:

I5, f2, f1. fa /3



2 Order of growth 10/10

-1 pts 1incorrect pair.

- 2 pts 2 incorrect pairs.
- 3 pts 3 incorrect pairs.
- 4 pts 4 incorrect pairs.
- 5 pts 5 incorrect pairs.
- 6 pts 6 incorrect pairs.
- 7 pts 7 incorrect pairs.
- 8 pts 8 incorrect pairs.
- 9 pts 9 incorrect pairs.

v - 0 pts Correct

- 10 pts 10 incorrect pairs.

Page 6



Question 3

For a DAG with n nodes and m edges (and assume m > n), design an algorithm to test
if there is a path that visits every node exactly once. The algorithm should run in O(m) time.

Assume we know the number of nodes n, and we have a list of edges E.

Algorithm:
Run a topological sort to get the topological ordering vy, vs, ..., v,
Fori=1,2,...,n—1:
if (Ui7vi+1) ¢ E)
return false
return true

By running a topological sort, the topological ordering of nodes will contain a path that
visits every node exactly once, if such a path exists. Running the topological sort takes
O(m+mn) time, and searching for an edge between every pair of topologically adjacent nodes
takes O(m) time with an adjacency list implementation. Since m dominates n, the overall
time complexity is O(m).



3DAG 19/ 20
v - 0 pts Correct

- 20 pts No answer

- 1 pts Hard to read

- 2 pts Correct idea, but needs a more formal algorithm description

- 2 pts No explanation for algorithm's correctness
v -1 pts Needs better explanation for algorithm's correctness. Need to justify that your algorithm returns true if
and only if G contains such a path.

- 8 pts Algorithm produces correct output, but with incorrect time complexity.

- 10 pts Incorrect, but a complete answer is given

- 1 pts Algorithm description needs some additional detail.

Page 8



Question 4

Given an array A of n distinct integers and assume they are sorted in increasing order. De-
sign an algorithm to find whether there is an index ¢ with A[i] = i. The algorithm should
run in O(log n) time.

Find(A,l,u) :
mid « I+] % |
if A[mid] = mid:
return true
ifu—1=0:
return false
if A[mid] < mid:
return Find(A, mid + 1, u)
if A[mid] > mid:
return Find(A, [, mid)

Since we have a sorted array of distinct integers, a value of ¢ such that A[i] =i will cause:
Indexes j < i to have values A[j] < j
Indexes j > i to have values A[j] > j

Therefore, we can use a binary search algorithm to locate such an index 7 if it exists. By
taking the midpoint index and comparing it with the value of A at that index, we can
recursively search either the top or bottom half. The base case where we know our search has
failed is if we get down to searching a single element that does not match its index. Therefore,
the maximum runtime for this algorithm is O(logon), giving us a runtime complexity of

O(logn).



4 Array 20/ 20
v - 0 pts Correct

- 2 pts no proof of correctness or explanation

Page 10



Question 5

There are several flying saucers on the sky to attack the Earth. For simplicity, we assume
Earth surface is 1-D and the flying saucers are on the sky, as shown in Figure 1. We know
there are n flying saucers and each of them occupies the open interval (L;, R;) (assume
L;, R; are integers). To destroy those flying saucers, we are going to fire the laser canon at
some locations. If the laser canon is fired at position = to the sky, it will destroy all the
saucers that intersects with this vertical line, i.e., all the flying saucers with = € (L;, R;)
will be destroyed, as illustrated in Figure 1. However, firing the laser canon is expensive
so we want to find a way to destroy all the flying saucers using as few laser canons as possible.

Mathematically, given n intervals (L;, R;)|i = 1,...,n, our goal is to find a minimum set of
numbers X = xq,...,z; such that for every interval 4, there is at least one z; in X contained
in the interval (L; < z; < R;). Give an O(nlogn) time algorithm to solve this problem, and
prove the correctness of your algorithm.

Algorithm:

Sort all flying saucers in ascending order by L; into a min heap S. Now, ¢ refers to each
saucer’s sorted order, where ¢ = 1 is the smallest L; and 7 = n is the largest L;. Ties are
broken arbitrarily.

Initially let S be the sorted min heap of all saucers S; = (L;, R;) and let X be empty
right <— oo // holds the maximum overlap value
While S is not empty
Sk < S.top(): // (the one that currently has the smallest L;)
If L < right: // If Sk is compatible
S.pop() // remove compatible saucer from set
right <— min(Ry, right) // Pick more restrictive of the two
Else:
Add Mot o
right <— oo // Ready for new laser
return X

This algorithm contains a heap sort, which takes O(nlogn). Then, it pops the root value
from the heap (each pop takes O(logn)) until the heap is empty. This means it must delete
n nodes, for a time complexity of O(nlogn+nlogn). Overall, the time complexity is O(nlogn).



Proof of Correctness:

To begin, we sort all saucers by the x coordinate of their left edge L;. This means that we
know for indexes £ > j that L, > L; is always true. To prove that the saucers at £ and
J overlap, all we need to show is that L; < R;. This is the basis for our algorithm. We
initially choose the first sorted saucer S; and set the variable right to hold R;.

Then, we iterate through the remaining saucers S,, in order. If L, < right, we know the
saucers overlap (and thus can be destroyed with a single laser). We then set right to be
the smallest R; of any saucer encountered thus far. The reasoning behind this is that if the
latest saucer is compatible with the right edge of the most restrictive saucer, it will also be
compatible with less restrictive saucers. In addition, since L; is always increasing due to the
saucers being in sorted order, our left edge will continually get more restrictive as well. As
we add more saucers to our laser, the possible coordinates of the laser get more restrictive
as L; increases and right decreases.

Once we find the first non-compatible saucer S,, such that L,, > right, subsequent saucers
will also be incompatible. This is because the value of L; is always increasing, due to being
in sorted order. At this point, we have a set of saucers that can be destroyed with a single
laser at a x coordinate between the left edge of the latest compatible saucer L;_; and the
most restrictive right edge so far, right. We fire at the exact midpoint of this, %.
This algorithm is optimal because it continues adding saucers to the current laser set until
it finds a saucer that is incompatible. At this point, there is at least one saucer S, in the set
that is incompatible with all following saucers, so we must fire a laser for it. By grouping
other compatible saucers with .S,,, we can only make our solution more efficient. We continue
this process, forming an optimal, minimized number of coordinates to shoot lasers at.



5 Flying saucers 30/30
v - 0 pts Correct
- 10 pts no correctness proof
- 2 pts hard to read
- 5 pts no time complexity proof
- 2 pts incomplete correctness proof
- 5 pts wrong time complexity proof
- 10 pts incorrect algorithm
- 30 pts no answer
- 5 pts incomplete algorithm
- O pts late submission
- 5 pts Not a regious description (or hard to follow)

- 0 pts Click here to replace this description.

Page 13



