
21S-COMSCI180-1 Final
SANCHIT AGARWAL

TOTAL POINTS

95 / 100

QUESTION 1

1 Q1 20 / 20

✓ - 0 pts Correct

 - 4 pts No runtime analysis.

 - 20 pts Wrong Algo.

 - 12 pts Do not satisfy the runtime constraint.

 - 3 pts Tiny mistakes.

 - 2 pts Do not return the edges should be removed.

QUESTION 2

Q2 25 pts

2.1 (a) 10 / 10

✓ - 0 pts Correct

 - 2 pts Algorithm slightly off

 - 2 pts Missing complexity, proof of correctness

 - 5 pts Click here to replace this description.

 - 10 pts Missing tag to question, please check with

TA

2.2 (b) 15 / 15

✓ - 0 pts Correct

 - 5 pts Suboptimal / incorrect algorithm

 - 6 pts Incorrect complexity with incorrect algorithm

 - 7 pts Click here to replace this description.

 - 10 pts Click here to replace this description.

QUESTION 3

3 Q3 25 / 25

✓ - 0 pts Correct

 - 10 pts Not using 2D dynamic programming.

 - 25 pts No answer

 - 5 pts Minor mistake with dynamic programming.

QUESTION 4

Q4 30 pts

4.1 (a) 7 / 7

✓ - 0 pts Correct

 - 7 pts Missing

4.2 (b) 6 / 7

 - 0 pts Correct

 - 0.5 pts very minor error (see comment)

✓ - 1 pts special case missing: negation operator

 - 1 pts Value assignment is wrong: +1 is true and -1 is

false.

 - 2 pts Clauses won't contain AND operator

 - 3 pts Incomplete answer: after reading your

answer, I still don't know how exactly to create such a

tree.

 - 3 pts A clause is a three-tuple connected with *or*

operators, not "and".

 - 5 pts Mostly wrong / only answered "Yes" with no

correct explanation.

 - 7 pts Empty / completely wrong.

 - 7 pts Handwriting extremely hard to read (regrade

request is welcomed).

4.3 (c) 12 / 16

 - 0 pts Correct

 - 8 pts Reduction is not polynomial. The

ForestVerify problem must be polynomial size. A

single tree needs 3x more subtrees per layer (one per

+1), giving exponential size. Also not allowed to just

do pointers, as the actual ForestVerify problem is still

the full exponential tree. (Otherwise you can solve

3SAT in polytime by following a +1 node backwards)

 - 12 pts Calling ForestVerify on each tree (clause)

only tells you that each tree has some assignment

that makes that tree true. Trees representing a single

clause are always satisfiable trivially. This has no

guarantee that the SAME assignment makes ALL

trees true. "Fixing this" takes exponential time, as it

would be a solver for 3SAT, since ForestVerify is

trivial on clause trees.

 - 12 pts Not allowed to modify the evaluation

function or node values. Nodes must be +1/-1.

Evaluation is always "True if sum >= 0". You can only

check if it's in ForestVerify, aka if some assignment

makes sum >= 0 or not. Changing any of this makes it

not a valid ForestVerify problem. This was stated in

the FAQ. (For comparison, you can't for example

change what 3SAT being satisfied means, so you

can't change what ForestVerify being True means)

 - 12 pts Did not account for ForestVerify accepting if

half of the trees can be satisfied, while 3SAT requires

all to be satisfied. "sum of [+1 or -1] > 0" only needs

half to be +1, the other half can be -1. E.g. just stated

to use part (b) for every clause, and no other

construction.

Close to correct (trying to add extra trees that

are always false), but minor issue
 - 4 pts Tried to add "always false" clauses then turn

them into trees, which can't be done as seen in HW4

Approx. Close enough to the right answer, you can

go straight to making "always -1" trees.

✓ - 4 pts Can't have "always false" literals, since the

decision problem considers all possible assignments

(similar to HW4). Close enough to the right answer,

as it's trying to make "always -1" trees.

 - 4 pts Can't have trees that are true when all

clauses true and false when any clause is false, as

that just solves 3SAT.

 - 12 pts Defined "half-3SAT", reduction from 3SAT to

half-3SAT is missing/wrong. This is not trivial. You

can't just repeat Approx from Hw as that adds 7 T and

1F and can't reach 1/2, and you can't add "always

false" clauses as seen with the HW.

 - 0 pts Other issue (see comment)

 - 16 pts Reduction in the wrong direction: Showed

Forest < 3SAT, problem asked for 3SAT < Forest

 - 16 pts No answer, no reduction/construction

provided from multi-clause 3SAT, or extremely

incorrect

Page 2

1 Q1 20 / 20

✓ - 0 pts Correct

 - 4 pts No runtime analysis.

 - 20 pts Wrong Algo.

 - 12 pts Do not satisfy the runtime constraint.

 - 3 pts Tiny mistakes.

 - 2 pts Do not return the edges should be removed.

Page 7

2.1 (a) 10 / 10

✓ - 0 pts Correct

 - 2 pts Algorithm slightly off

 - 2 pts Missing complexity, proof of correctness

 - 5 pts Click here to replace this description.

 - 10 pts Missing tag to question, please check with TA

Page 10

2.2 (b) 15 / 15

✓ - 0 pts Correct

 - 5 pts Suboptimal / incorrect algorithm

 - 6 pts Incorrect complexity with incorrect algorithm

 - 7 pts Click here to replace this description.

 - 10 pts Click here to replace this description.

Page 14

3 Q3 25 / 25

✓ - 0 pts Correct

 - 10 pts Not using 2D dynamic programming.

 - 25 pts No answer

 - 5 pts Minor mistake with dynamic programming.

Page 18

4.1 (a) 7 / 7

✓ - 0 pts Correct

 - 7 pts Missing

Page 21

4.2 (b) 6 / 7

 - 0 pts Correct

 - 0.5 pts very minor error (see comment)

✓ - 1 pts special case missing: negation operator

 - 1 pts Value assignment is wrong: +1 is true and -1 is false.

 - 2 pts Clauses won't contain AND operator

 - 3 pts Incomplete answer: after reading your answer, I still don't know how exactly to create such a tree.

 - 3 pts A clause is a three-tuple connected with *or* operators, not "and".

 - 5 pts Mostly wrong / only answered "Yes" with no correct explanation.

 - 7 pts Empty / completely wrong.

 - 7 pts Handwriting extremely hard to read (regrade request is welcomed).

Page 23

4.3 (c) 12 / 16

 - 0 pts Correct

 - 8 pts Reduction is not polynomial. The ForestVerify problem must be polynomial size. A single tree needs

3x more subtrees per layer (one per +1), giving exponential size. Also not allowed to just do pointers, as the

actual ForestVerify problem is still the full exponential tree. (Otherwise you can solve 3SAT in polytime by

following a +1 node backwards)

 - 12 pts Calling ForestVerify on each tree (clause) only tells you that each tree has some assignment that

makes that tree true. Trees representing a single clause are always satisfiable trivially. This has no guarantee

that the SAME assignment makes ALL trees true. "Fixing this" takes exponential time, as it would be a solver

for 3SAT, since ForestVerify is trivial on clause trees.

 - 12 pts Not allowed to modify the evaluation function or node values. Nodes must be +1/-1. Evaluation is

always "True if sum >= 0". You can only check if it's in ForestVerify, aka if some assignment makes sum >= 0

or not. Changing any of this makes it not a valid ForestVerify problem. This was stated in the FAQ. (For

comparison, you can't for example change what 3SAT being satisfied means, so you can't change what

ForestVerify being True means)

 - 12 pts Did not account for ForestVerify accepting if half of the trees can be satisfied, while 3SAT requires

all to be satisfied. "sum of [+1 or -1] > 0" only needs half to be +1, the other half can be -1. E.g. just stated to

use part (b) for every clause, and no other construction.

Close to correct (trying to add extra trees that are always false), but minor issue
 - 4 pts Tried to add "always false" clauses then turn them into trees, which can't be done as seen in HW4

Approx. Close enough to the right answer, you can go straight to making "always -1" trees.

✓ - 4 pts Can't have "always false" literals, since the decision problem considers all possible assignments

(similar to HW4). Close enough to the right answer, as it's trying to make "always -1" trees.

 - 4 pts Can't have trees that are true when all clauses true and false when any clause is false, as that just

solves 3SAT.

 - 12 pts Defined "half-3SAT", reduction from 3SAT to half-3SAT is missing/wrong. This is not trivial. You can't

just repeat Approx from Hw as that adds 7 T and 1F and can't reach 1/2, and you can't add "always false"

clauses as seen with the HW.

 - 0 pts Other issue (see comment)

 - 16 pts Reduction in the wrong direction: Showed Forest < 3SAT, problem asked for 3SAT < Forest

 - 16 pts No answer, no reduction/construction provided from multi-clause 3SAT, or extremely incorrect

Page 26

