21S-COMSCI180-1 Final

JOE PINTO, SR

TOTAL POINTS

99 /100

QUESTION 1
1Q120/20
v - 0 pts Correct
- 4 pts No runtime analysis.
- 20 pts Wrong Algo.
- 12 pts Do not satisfy the runtime constraint.

- 3 pts Tiny mistakes.

- 2 pts Do not return the edges should be removed.

QUESTION 2

Q225 pts

2.1(a) 10/10
v - 0 pts Correct
- 2 pts Algorithm slightly off
- 2 pts Missing complexity, proof of correctness
- 5 pts Click here to replace this description.
- 10 pts Missing tag to question, please check with
TA

22(b)15/15
v - 0 pts Correct
- 5 pts Suboptimal / incorrect algorithm
- 6 pts Incorrect complexity with incorrect algorithm
- 7 pts Click here to replace this description.

- 10 pts Click here to replace this description.

QUESTION 3
3Q325/25
v - 0 pts Correct
- 10 pts Not using 2D dynamic programming.
- 25 pts No answer

- 5 pts Minor mistake with dynamic programming.

QUESTION 4

Q4 =0 pts

41(@)7/7
v - 0 pts Correct
- 7 pts Missing

42(b)6/7

- 0 pts Correct

- 0.5 pts very minor error (see comment)
v -1 pts special case missing: negation operator

- 1 pts Value assignment is wrong: +1is true and -1is
false.

- 2 pts Clauses won't contain AND operator

- 3 pts Incomplete answer: after reading your
answer, | still don't know how exactly to create such a
tree.

- 3 pts A clause is a three-tuple connected with *or*
operators, not "and".

- 5 pts Mostly wrong / only answered "Yes" with no
correct explanation.

- 7 pts Empty / completely wrong.

- 7 pts Handwriting extremely hard to read (regrade

request is welcomed).

43(c)16/16
v - 0 pts Correct
- 8 pts Reduction is not polynomial. The
ForestVerify problem must be polynomial size. A
single tree needs 3x more subtrees per layer (one per
+1), giving exponential size. Also not allowed to just
do pointers, as the actual ForestVerify problem is still
the full exponential tree. (Otherwise you can solve
3SAT in polytime by following a +1 node backwards)
- 12 pts Calling ForestVerify on each tree (clause)
only tells you that each tree has some assignment

that makes that tree true. Trees representing a single

clause are always satisfiable trivially. This has no
guarantee that the SAME assignment makes ALL
trees true. "Fixing this" takes exponential time, as it
would be a solver for 3SAT, since ForestVerify is
trivial on clause trees.

- 12 pts Not allowed to modify the evaluation
function or node values. Nodes must be +1/-1.
Evaluation is always "True if sum >=0". You can only
check if it's in ForestVerify, aka if some assignment
makes sum >= 0 or not. Changing any of this makes it
not a valid ForestVerify problem. This was stated in
the FAQ. (For comparison, you can't for example
change what 3SAT being satisfied means, so you
can't change what ForestVerify being True means)

- 12 pts Did not account for ForestVerify accepting if
half of the trees can be satisfied, while 3SAT requires
all to be satisfied. "sum of [+1 or -1]> 0" only needs
half to be +1, the other half can be -1. E.g. just stated
to use part (b) for every clause, and no other

construction.

Close to correct (trying to add extra trees that
are always false), but minor issue

- 4 pts Tried to add "always false" clauses then turn
them into trees, which can't be done as seen in HW4
Approx. Close enough to the right answer, you can
go straight to making "always -1" trees.

- 4 pts Can't have "always false" literals, since the
decision problem considers all possible assignments
(similar to HW4). Close enough to the right answer, as
it's trying to make "always -1" trees.

- 4 pts Can't have trees that are true when all
clauses true and false when any clause is false, as
that just solves 3SAT.

- 12 pts Defined "half-3SAT", reduction from 3SAT to
half-3SAT is missing/wrong. This is not trivial. You
can't just repeat Approx from Hw as that adds 7 T and
1F and can't reach 1/2, and you can't add "always
false" clauses as seen with the HW.

- 0 pts Other issue (see comment)

- 16 pts Reduction in the wrong direction: Showed
Forest < 3SAT, problem asked for 3SAT < Forest

Page 2

- 16 pts No answer, no reduction/construction
provided from multi-clause 3SAT, or extremely

incorrect

CS180 Final Exam

Due: 11:29 am PDT, June 9
Please submit on gradescope

For all the algorithms you design, in addition to describe your algorithm clearly, please also (a) briefly justify
the correctness of the algorithm; (b) present the time complexity of the algorithm and briefly justify the reason.
Partial credits will be given if your algorithm has complexity slightly worse than the solution for all the problems.

1. (20 pt) Given an undirected connected graph where each edge is associated with a positive weight, we want
to find a set of edges such that removing those edges will make the graph acyclic. Design an algorithm to
find such edge set with the smallest total weight. The algorithm should run in O((m + n)logn) time.

ﬂrb w.é/em i e;umlu/ Yo VL\WI e N
"Mzzﬂ«um slmuk.‘ta ¢ree” o-P {’lg %m/)
Th isoclefred o> tle "”"j f)ee

ot Jios fhe, rinic 55?2; CZ’Z;4 wm//

ok e Wi et
WMMMW:‘ 5'9;1 g%@ weaus n C Lo(u))
.maae -) A%MW‘ e et €, OG)

V\W(&& on the Xidte™

0L nadiuuin

P @/%ewh‘al/
Tl"rs M‘zﬁ‘lus wj eo(wfms Fhtm, Heneéj

,fﬁa&% mg 12 e e :f:l Of f%‘f"//

g\af‘\ o Pt:tas) Cy\)* O(h)".o(tw”)/‘sh)
< O ((wl-k)/oﬁ?\)

1Q120/20
v - 0 pts Correct
- 4 pts No runtime analysis.
- 20 pts Wrong Algo.
- 12 pts Do not satisfy the runtime constraint.
- 3 pts Tiny mistakes.

- 2 pts Do not return the edges should be removed.

Page 4

2. (25 pt) In this problem, our goal is to design sublinear time algorithms for finding a “hill” in a given 1D
or 2D array. We say an element in a 1D or 2D array is a “hill” if and only if its value is larger than all its
neighbors. In 1D array the neighbors for A[i] are A[i — 1] and A[i + 1] and in 2D the neighbors for A[i, j]
are A[i—1,j],Ali+1,j],Ali,j—1], Ali, j+1]. Elements on the boundary of arrays will have less neighbors,
for instance A[0] only has one neighbor A[1]; A[0, 0] only has two neighbors A[0, 1],A[1,0]. An array could
have multiple hills, and we only need to find one of them. Figure 1 illustrates two examples, one in 1D and
another in 2D.

10 4 | 6 | 5

10| 4 |6 | 5| 0| 3| 2

121 0| 7|3

13 (14| 15| 16

Figure 1: The right panel illustrates a 1D example and the left panel illustrates a 2D example, where the blue
cells are hills. There could be multiple hills and our goal is to find one of them.

(a) (10 pt) Given a 1D integer array of size n and assume the values are distinct. Design an algorithm to
find a hill in O(logn) time.

(b) (15 pt) Now we extend the algorithm to find a hill in a 2D array of size n x n. Design an algorithm
to return the position of one of the hills in O(n) time. Partial credits will be given to algorithms with
slightly higher complexity, for instance, a solution with time complexity O(nlogn) will get 10 points.

/8!‘/1 | ih'%ul'}e' sfart20, enof=h-1 oma}} - A
. A
FindHil[o, gw,em() This al ,;/ -
f{: ot == end (s QSSeh / -
il = Semol\

biha
e(se'.w e M) .é[a_‘ f@aféb

iP(afwd] > alwd +1) "J"> oh
veton SdHill{a sk, wd) s' 0 nlfgﬁ& Eiwsov@

e(gemwtu)h P‘»\JH;/’G/ WH"/Q"J) ((.

2.1(a)10/10
v - 0 pts Correct
- 2 pts Algorithm slightly off
- 2 pts Missing complexity, proof of correctness
- 5 pts Click here to replace this description.
- 10 pts Missing tag to question, please check with TA

Page 6

¥ w'a e/ewwfeén:t'b(wfwen’ OCN)

raxz €
for each elemed € € el yow: ©OC7)
(F e 7 Thax'
N2 =€
wa S ih {LQ w;o(ow am(CO[um.i OC()
: e raZ o /)
: e S -fhe "W/ column: OCI
ene [fF w:c b,‘aégmun the Dy e/ avd ¥ ol (;{.’féej.
GXIILL) .

else He s0b L has the binaey
sebarvay € s nae
Sy of mas (i o o)

the wmiol oW

9[54 I paX 3 P"""‘ y .
,‘g e bgqor ¢lan cell abovt ovl | fobw lea:‘:‘?:

sefurn maX

e/SQ
recurse o tHe 5Su
Ne ighbout of wax Clebt or NDH

Téﬁ.’sa(js' _)ZZ”’:,&) pmenhS
Y
1 letieh, SMCe;% = '{ Z), thos s

TosteY
Db o OCn) a[acpffém .

2.2(b)15/15
v - 0 pts Correct
- 5 pts Suboptimal / incorrect algorithm
- 6 pts Incorrect complexity with incorrect algorithm
- 7 pts Click here to replace this description.
- 10 pts Click here to replace this description.

Page 8

3. (25 pt) There are n cities on a highway with coordinates x,, ..., x, and we aim to build K < n fire stations
to cover these cities. Each fire station has to be built in one of the cities, and we hope to minimize the
rage distance from e h ty o the closest fire s n. Please give an algorithm to compute the optimal
way to pl h e K fire . The 1g hm h ld in O(n2K) time. Partial credits will be given
lg hm s with slight ly h gh complexity, for ,as lutlo with time complexity O(n®K) will get

11111

mi€ Pro %wm'hﬁ)
US@ DJW‘ J o /l/l e e €W {_,3
Defe a (nt) x (k) S 5@/ - s
MLi, 'VV‘] C 'P' [€vem a»;ol%, Z:: ‘l\ 1¢. Stafms
{Le, OF4MI -(\e+ vlu\‘w am"éewul &, {[e co(a/ /b:f(
o {‘flt-fz(;?a, -p/"?- 9‘}“ q‘k q,'/~9(ﬂ-ﬁre Statioy
Mt 15 o aed the i " ml D0t vt
g,(’.' X;,, a('(evS fle F'QMS Mfu Hoor alles k3 fo

P‘m[P‘F"ﬁ—s for :‘f;%s:zro”w aw(a/)f@ aéjhamz

brmk th P""éQ“" 1 ca/cuw
P)oa';awm {’ta‘, M[l/ 1 rs tlon)
0S5 . [m1= mmﬁ M[H m I] N lm—ll +eost(i

MLc- 5%-’]+m*(i) B

_%1“2 /M [’Z W"Il"Cd'ﬁ?téﬂ L-IE
1 d&il

(wher Caz"(z-ﬂ i) o(emk.S ‘He, o Cozf‘oﬁe m
(N gy, iy G ot tle fro closest
:n/ ok A, ool X;

e @QBJ:’«/@% e C the bogt frestation
oo () “Snch tot th zis;{ [t S L lishrs

of cifies X, .. X 12 Wb it
Tlo ol Soluken mLVK1 15 En
N

niwKl= mit 2[\/\[5/ Kl* Z[mla(;*
, Sd ™ 0(n> [% sl uns)

Ciwa tle coffs @
. ﬁ w00 t8 5

3Q325/25
v - 0 pts Correct
- 10 pts Not using 2D dynamic programming.
- 25 pts No answer

- 5 pts Minor mistake with dynamic programming.

Page 11

4. (30 pt) Decision tree is an important model for binary classification. Given an input binary string x =
X1X5...X4, €ach x; denotes a binary attribute of an input instance (e.g., in practice an input instance could
be a document, an image, or a job application). A decision tree tries to map this string to a prediction value
based on a tree structure—starting from root node, at each node we decide going left or right by the value
of an attribute x;; and at each leaf node will assign either +1 or —1 to the input. A decision forest consists
of multiple decision trees, and the final prediction value is the sum of all these predictions. If we use f,(x)
to denote the prediction value of the t-th tree and assume there are in total T trees, the final prediction of

the decision forest is
True if Zthl fi(x)=0
False otherwise.

For example, Figure 2 illustrates a decision forest and the prediction values for several input strings.

Figure 2: A decision forest. For input x;x,Xx3x, = 0100 it wil traverse the trees based on the dashed arrow, so
the first tree outputs +1, the second tree output +1, and the final output is True. For the same decision forest,
the input x; x,x3x, = 0011 will produce —2, thus False.

An important property for a machine learning model is that the model can’t always produce the same output.
Therefore, we want to solve the Forest-Verify problem such that given a decision forest, determine whether
there exists a d-dimensional input binary string x such that the prediction of this decision forest is True.
(The same procedure can also detect whether there exists an input to produce False).

Show the Forest-Verify problem is NP-complete.

(a) (7 pt) Show the Forest-Verify problem belongs to NP

(b) (7 pt) Let’s first assume there’s only one Clause in 3-SAT, can you turn this into a single decision tree
such that the prediction of Decision tree corresponds to the value of this Clause?

(c) (16 pt) Derive a polynomial time reduction from 3-SAT to Forest-Verify.

) Jn orotex v‘a Jow Fo .
) l\}P C(:/%, 5 av\l‘(:uc+7? Ue,(j:)) ‘Ssmr};ffv

In fLrs e Ou7 f Ma
o docos he(() Our e,v'blwe ¢ rould
b@ a pive p"?"‘/"' st L~A A .. , Our M{ﬁ'f
q lagy fm B(s.t) Lol £hen Sm«r[be yinnin T
J tle decismn \PM“'Q fo w P& wleﬂel 4 c 3
o n POQMM 74%@

-(Lw;@\\
{r .ZL"; {riml sutfthzka c;;»\ é(@%m
SO f ;o wiears veYi\«
n ttt:f -'t\l)pP clo¥s, s/m;g(ﬂ:hi an e me';"'m(fﬂ ,Pey
(a [y / Qi (@
dk : :) [vdol, eCt'Sl‘O’") 7‘090122;/9)

N.
Some un Y

of ot each hce Con
ol r» tle % ‘He e S“o
> e fﬂ‘ {-\ ovoler oPd

ol a (w-a cmgtrt a o(ecsm free & e
o 3"8(9, 3-9)47-({4

Vac‘sz 7—[1:5 Clan$€ w:// on/'j
7 2y 1S o ole |
fﬂe 0’8(‘13 W ’

L /014 (o4

(,amv(eY Clanse €‘2C V X

pvaliate o t14e ,3(’ at 1mf / op L, A2 ©
we Cah mm {' 3 be vio¥ J cawz/mcflh:)

free &5 UG {lows”.

41(@)7/7
v - 0 pts Correct
- 7 pts Missing

Page 14

) Jn orotex v‘a Jow Fo .
) l\}P C(:/%, 5 av\l‘(:uc+7? Ue,(j:)) ‘Ssmr};ffv

In fLrs e Ou7 f Ma
o docos he(() Our e,v'blwe ¢ rould
b@ a pive p"?"‘/"' st L~A A .. , Our M{ﬁ'f
q lagy fm B(s.t) Lol £hen Sm«r[be yinnin T
J tle decismn \PM“'Q fo w P& wleﬂel 4 c 3
o n POQMM 74%@

-(Lw;@\\
{r .ZL"; {riml sutfthzka c;;»\ é(@%m
SO f ;o wiears veYi\«
n ttt:f -'t\l)pP clo¥s, s/m;g(ﬂ:hi an e me';"'m(fﬂ ,Pey
(a [y / Qi (@
dk : :) [vdol, eCt'Sl‘O’") 7‘090122;/9)

N.
Some un Y

of ot each hce Con
ol r» tle % ‘He e S“o
> e fﬂ‘ {-\ ovoler oPd

ol a (w-a cmgtrt a o(ecsm free & e
o 3"8(9, 3-9)47-({4

Vac‘sz 7—[1:5 Clan$€ w:// on/'j
7 2y 1S o ole |
fﬂe 0’8(‘13 W ’

L /014 (o4

(,amv(eY Clanse €‘2C V X

pvaliate o t14e ,3(’ at 1mf / op L, A2 ©
we Cah mm {' 3 be vio¥ J cawz/mcflh:)

free &5 UG {lows”.

/-(\M Ty ’Q{{Ae £ ,q,[,frm oS frue ao(-/ a$
alse, flwf free ,027: fv;/(te;eﬁ:f ‘fn; /"{3“(\:0/ Oh/J

LF a% /ea,r’ ane O.p Kl/zz or 13 A"’S l/a/ke I, O‘fk'ibwk
it il W«f"‘m {:z(’f, w’a,‘CL Qef[,b.{es the belovio? c\p

a 5-GAT lanse

C> l’Vl 070{2)! ?lO fbﬁw":i 5:/;(3&::/;11,%%:33/4r

‘,w‘O M'V@fa we oa”
3-SAT fw"é‘" b €, NCe... ACyy wloe each
7. ic an ‘ot of B b €8x, A2, T,
O we (veafe o free as n portb) ol l,m
for enck, G 8 (el ool 1
m”;;, {ov each (i, we will cole/

/s S‘u‘/"ﬁ-ﬁed C-hue), Ao‘O'(J
" free, which ™ a free tlot wil! aluays

a "maa-!.'ve
gvelak© Yo ~I. This could be "‘"f"’""‘"’/ aso shale
clecssiom st tuoubf Ythen

/ta—rw’de Loith yalue ~[. Cu¥
look 0‘—5(‘2((9“’5 (L be,»s the a/’,’wf’mk /okmt)

N freey {c)(u/

42(b)6/7
- 0 pts Correct
- 0.5 pts very minor error (see comment)
v -1 pts special case missing: negation operator
- 1 pts Value assignment is wrong: +1is true and -1 is false.
- 2 pts Clauses won't contain AND operator
- 3 pts Incomplete answer: after reading your answer, | still don't know how exactly to create such a tree.
- 3 pts A clause is a three-tuple connected with *or* operators, not "and".
- 5 pts Mostly wrong / only answered "Yes" with no correct explanation.
- 7 pts Empty / completely wrong.
- 7 pts Handwriting extremely hard to read (regrade request is welcomed).

Page 17

/-(\M Ty ’Q{{Ae £ ,q,[,frm oS frue ao(-/ a$
alse, flwf free ,027: fv;/(te;eﬁ:f ‘fn; /"{3“(\:0/ Oh/J

LF a% /ea,r’ ane O.p Kl/zz or 13 A"’S l/a/ke I, O‘fk'ibwk
it il W«f"‘m {:z(’f, w’a,‘CL Qef[,b.{es the belovio? c\p

a 5-GAT lanse

C> l’Vl 070{2)! ?lO fbﬁw":i 5:/;(3&::/;11,%%:33/4r

‘,w‘O M'V@fa we oa”
3-SAT fw"é‘" b €, NCe... ACyy wloe each
7. ic an ‘ot of B b €8x, A2, T,
O we (veafe o free as n portb) ol l,m
for enck, G 8 (el ool 1
m”;;, {ov each (i, we will cole/

/s S‘u‘/"ﬁ-ﬁed C-hue), Ao‘O'(J
" free, which ™ a free tlot wil! aluays

a "maa-!.'ve
gvelak© Yo ~I. This could be "‘"f"’""‘"’/ aso shale
clecssiom st tuoubf Ythen

/ta—rw’de Loith yalue ~[. Cu¥
look 0‘—5(‘2((9“’5 (L be,»s the a/’,’wf’mk /okmt)

N freey {c)(u/

No{t ‘6{,a{' {LZ Sum O—F tle Cb- frees e [will
a(wu(\s be v if avol onl [.F all clavges arx %Aspm/.

Tl’te N Cofl'€5 0‘\? ~ il {[em qea(uce -(’ltg '/o’u/ Pvn‘

Sum to O £ arel dhﬁ :‘-F all cluse tres ¥f*

| (i.0. all 3-GA T clases a'e Saflsﬁeol)) Laum\B He

%\eﬁ vev,'_&\\3 f;rocess Yo %Fm} f,ue since
Z‘v‘:(")w 0‘«[3 wlen the 3-SAT trees

20
all eva[w\‘! Jo |. |¥ ahs Y-SAT +ree e valuntts O
ot a Yorel MSMM 90/50

- , we will

Joest ven“% will retm Qc‘lse/ W“M”f_‘) the
behavigwr © % y-SAT in all caseS. Tle’)qpa&
Sihee ouy Paddi{eato 1o He 3-SAT inputcan

be wwole M ?ol vighernl 1€, W8 have

Succassj;l[(oL [wyotial Lime
"YZO[»«,'{/‘OVI3 %y:m 3-5,4’;]0'37‘0 'Pneml-ve'ﬁ-P .

43(c)16/16
v - 0 pts Correct

- 8 pts Reduction is not polynomial. The ForestVerify problem must be polynomial size. A single tree needs 3x
more subtrees per layer (one per +1), giving exponential size. Also not allowed to just do pointers, as the actual
ForestVerify problem is still the full exponential tree. (Otherwise you can solve 3SAT in polytime by following a +1
node backwards)

- 12 pts Calling ForestVerify on each tree (clause) only tells you that each tree has some assignment that makes
that tree true. Trees representing a single clause are always satisfiable trivially. This has no guarantee that the
SAME assignment makes ALL trees true. "Fixing this" takes exponential time, as it would be a solver for 3SAT,
since ForestVerify is trivial on clause trees.

- 12 pts Not allowed to modify the evaluation function or node values. Nodes must be +1/-1. Evaluation is always
"True if sum >= Q". You can only check if it's in ForestVerify, aka if some assignment makes sum >= 0 or not.
Changing any of this makes it not a valid ForestVerify problem. This was stated in the FAQ. (For comparison, you
can't for example change what 3SAT being satisfied means, so you can't change what ForestVerify being True
means)

- 12 pts Did not account for ForestVerify accepting if half of the trees can be satisfied, while 3SAT requires all to
be satisfied. "sum of [+1 or -1] > 0" only needs half to be +1, the other half can be -1. E.g. just stated to use part (b)

for every clause, and no other construction.

Close to correct (trying to add extra trees that are always false), but minor issue

- 4 pts Tried to add "always false" clauses then turn them into trees, which can't be done as seen in HW4
Approx. Close enough to the right answer, you can go straight to making "always -1" trees.

- 4 pts Can't have "always false" literals, since the decision problem considers all possible assignments (similar
to HW4). Close enough to the right answer, as it's trying to make "always -1" trees.

- 4 pts Can't have trees that are true when all clauses true and false when any clause is false, as that just solves
3SAT.

- 12 pts Defined "half-3SAT", reduction from 3SAT to half-3SAT is missing/wrong. This is not trivial. You can't
just repeat Approx from Hw as that adds 7 T and 1F and can't reach 1/2, and you can't add "always false" clauses
as seen with the HW.

- 0 pts Other issue (see comment)

- 16 pts Reduction in the wrong direction: Showed Forest < 3SAT, problem asked for 3SAT < Forest

- 16 pts No answer, no reduction/construction provided from multi-clause 3SAT, or extremely incorrect

Page 20

