
CS 180: Introduction to Algorithms and Complexity
Final Exam

June 9, 2020

Name

UID

Section

1 2 3 4 5 6 Total

Æ Print your name, UID and section number in the boxes above, and print your name at the top of every
page.

Æ Your Exams need to be uploaded in Gradescope. Use Dark pen or pencil. Handwriting should be
clear and legible.

• There are 6 problems.

• Do not write code using C or some programming language. Use English or clear and simple pseudo-code.
Explain the idea of your algorithm and why it works.

• Your answers are supposed to be in a simple and understandable manner. Sloppy answers are expected to
receive fewer points.

• Don’t spend too much time on any single problem. If you get stuck, move on to something else and come
back later.

1



Name: UID: CS180 Final Exam

1. For each of the following problems answer True or False and briefly justify your answer.

(a) (4pt) Prim’s algorithm and Kruskal’s algorithm will produce the same minimum spanning tree when
the edge weights are distinct.

(b) (4pt) Suppose we run Kruskal’s algorithm but instead of following the increasing order of edge weights,
we use the decreasing order of edge weights. This will return the spanning tree of maximum total cost.

(c) (4pt) If G is a weighted, connected graph with n nodes containing a negative weight cycle, then for
every two nodes s, t, the shortest path from s to t containing n+ 1 edges is strictly shorter than the
shortest path from s to t containing n edges. (Note that here we allow a path to have duplicate nodes
and edges.)

(d) (4pt) If problem A is in P and problem B is in NP, then A≤p B.

2



Name: UID: CS180 Final Exam

2. (4 pt) Assume we have the following three divide-and-conquer algorithms:

• For problem with size n, solve 7 sub-problems of size n/7, and use O(n) time to combine the results
to get the solution of the original problem.

• For problem with size n, solve 16 subproblems of size n/4, and then constant time to combine the
results to get the solution of the original problem.

• For problem with size n, solve 2 subproblems of size n/2, and the O(n2) time to combine the results
to get the solution of the original problem.

Calculate the time complexity for each algorithm and show which one is the fastest.

3



Name: UID: CS180 Final Exam

3. (20pt) There is an array with n integers, but the values are hidden to us. Our goal is to partition the
elements into groups based on their values — elements in the same group should have the same value,
while elements in different groups have different values. The values are hidden to us, but we can probe
the array in the following way: we can query a subset of these n elements, and get the number of unique
integers in this subset. Design an algorithm to partition these n elements in O(n log n) queries.

4



Name: UID: CS180 Final Exam

4. (20pt) A phone company divides a city into n cells c1, c2, ..., cn. In each cell it has a tower. When a call
comes to a mobile user the company has a set of probabilities p1, p2, ..., pn such that the user is now at cell
ci with pi probability. The company wants to activate as few towers as possible on average to find the user.
When it activates a tower in a cell where the user is, the search stops. Search time is divided into d slots. By
the end of d slots the user must be found. The question the company faces is what are the towers(cells) to
activate in slot 1,2, ..., d as to minimize the expected number of activations. More specifically, the company
wants a policy which is a collection of d sets S1, S2, ..., Sd where Si contains towers (cells) to be activated at
slot i.

For example, let n = 5 and d = 3, a policy might be S1 = {c1}, S2 = {c2, c4}, S3 = {c3, c5}. The expected
number of activation for this policy is 1+ 2 · (1− p1) + 2 · (1− p1 − p2 − p4)

(a) What is the optimal policy if pi =
1
n for all i and d = 2. Prove it to be optimal. [5 pts]

(b) Prove that in an optimal policy, S1 is a set of cells which is a prefix of the non-increasing sorted order
of the cells according to their probability. [5 pts]

(c) Design a polynomial time algorithm to calculate the optimal policy in general. Justify the correctness
of your algorithm and it’s time complexity. [10 pts]

5



Name: UID: CS180 Final Exam

5. (20pt) Given a large W × L rectangle, we want to cut it into smaller rectangles of specific shapes (a1 ×
b1), (a2 × b2), . . . , (aK × bK). Note that all these numbers, including W, L, a1, . . . , aK , b1, . . . , bk are integers,
and each time we can only make a full horizontal or vertical cut on a rectangle at an integer point to split
it into two. In the end we will get a collection of small rectangles, hopefully most of them have the shape
matching one of the ai × bi , but there could be pieces that don’t match with any pre-specified shapes and
those areas are wasted. For simplicity we assume the rectangles cannot be rotated (so ai × bi is different
from bi×ai). We don’t care about how many of these smaller rectangles we get in the end, but our goal is to
minimize the total wasted area. Design an algorithm that runs in polynomial time of k, W, L that computes
the minimum possible wasted area.

For example, assume W = 21, L = 11 and the desired rectangles are (10×4), (9×8), (6×2), (7×5), (15×10).
The minimum possible wasted area is 10 (the gray area), as shown in Figure 1.

Figure 1

6



Name: UID: CS180 Final Exam

6. (20pt) Consider the problem of “Approx-3SAT”: The input is the same as 3-SAT, which is a boolean expression
C1∧C2∧· · ·∧Cn where each Ci is an “or” of three literals (each literal can be one of x1, . . . , xm,¬x1, . . . ,¬xm).
Note that we assume a clause cannot contain duplicate literals (e.g., (x1 ∨ x1 ∨ x2) is not allowed). Instead
of determining whether there’s a truth assignment on {x i}mi=1 that satisfies this boolean expression (which
means it satisfies all the clauses), now we want to determine whether there’s an assignment that satisfies
at least n− 1 clauses. Prove that Approx-3SAT is NP-Complete.

7


