211A-COMSCI180-1 Final

MENGAN WANG

TOTAL POINTS

102 /100

QUESTION 1

1Problem 137/35
v - 0 pts Correct
- 5 pts there is no selection of projects
- 20 pts wrong algorithm
v + 2 pts Name
- 10 pts The algorithm may produce the non-optimal

solution

| think it's more common to say that the
complexity is O(mn) since m is in a parameter in

the setting.

QUESTION 2

2 Problem 2 35/35
v - 0 pts Correct
- 3 pts Complexity is incorrect.
- 20 pts The algorithm does not give the schedule.
- 20 pts Wrong algorithm.
- 15 pts Wrong greedy strategy.

- 10 pts No proof of correctness.

QUESTION 3

3 Problem 3 30/30
v - 0 pts Correct
- 5 pts Mistakes in the algorithm.
- 10 pts The algorithm does not take competition of
vl and vn into account.
- 15 pts Wrong algorithm.
- 15 pts Missing significant details in the algorithm.
- 15 pts Algorithm is not efficient.
- 5 pts Algorithm is not clear: only some
descriptions.
- 5 pts No explanation of correctness.
- 28 pts No reasonable algorithm.

- 29 pts No algorithm.

Page 1

CS180 Final

Mengan Wang

1 Problem 1

1.1 Explanation/Proof + Algorithm:

Let us assume that n is an integer, greater than 0, and the number of total projects to choose
from. We also assume m is an even integer, greater than 0, and is the maximum number of
months that the projects length can add up to.

We are going to find the maximum profit that the company can make by calculating the
profit that would be made with and without the 10 extra programmers. We will also have a
method which will call the algorithm with 10 extra programmers and the algorithm without
and compare the two values for which one is greater. The two algorithms work in this way:

Def: Opt(R;,m) = optimal profit with items 1,...i with max time limit m.
Goal: Get the maximum profit for Opt(R,,,m).

Case 1: Opt(R;) doesn’t select software system R;, meaning that Opt(R;,w) selects the
optimal profit from 1,2,...i-1 with maximum time limit m.

Case 2: Opt(R;) selects software system R;. Thus we need to collect profit p;, set time limit
= m - m;, and Opt(R;,w) selects the optimal profit from 1,2,...i-1 with the new time limit.

Bellman Equation:

0 ifi=0
Opt(R;, w) = § Opt(R;, w) if m; > m
maz(Opt(Ri.1,m), p;+Opt(Ri1,m-m;) otherwise

For the second method when we have 10 extra programmers, we use the same logic but at
the very end subtract the cost $10*a from the total profit which is what it cost to hire them.
Also we will divide the time it takes to complete each project m; by 2.

maxProfitWithoutMoreProgrammers(n, m, a, [p1, p2, ... Pn), [M1, Mo, ... m,)):
Array MJ[0...n, 0...m]
MJ0,i] = 0 for each i = 0,1,...,w
fori=1,2,...,n
forj=0, .., m
if m < m;, then M[i][j] = M[i-1][j]
else M[i][j] = max(M[i-1][j], pi+M[i-1][m-my;])
end if
end for

end for

maxProfitWithMoreProgrammers(n, m, [p1, pa, ... Pn), [My, Mo, ... m,]):
m[i] = (m[i]/2) fori =0,1,..n
Array MJ[0...n, 0...m]
MJ0,i] = 0 for each i = 0,1,....m
fori=1,2,...,n
forj=0, .., m
if m < my, then M[i][j] = M[i-1][j]
else MI][] = max(M[i-1][], pi-+M(i-1][m-my)
end if
end for
end for

return M

chooseProjects(i, j, Subset, M):
ifi €=0er] <=0
then we terminate this function call instance
end if

if M[i,j] > M]Ji-1,j], then add project i into Subset, and recurse chooseProjects(i-1,m-
m;,Subset, M)

else recurse chooseProjects(i-1,j,Subset, M)

end if

getMaxProfit(n, m, [Ry, Ra, ... Ry], [P1, P2, - Dn), [m1, mo, ... my)):
Array profitl] = maxProfitWithoutMoreProgrammers(n,m,[py, p2, ... Pn), [M1, Mo, ... m,])
Array profit2 = maxProfitWithMoreProgrammers(n,m,a,[p1, p2,...pn),[m1, mg,...m,])-10*a
Array Subset[0...n]
if (profitl[n][m] > profit2[n|[m])
chooseProjects(n,m,Subset,profit1)
else chooseProjects(n,m,Subset,profit2)
end if
return Subset

end getMaxProfit

1.2 Time Complexity:

The time complexity of our algorithm is O(n).

This is because we have two methods where there is a for loop that iterates n times and the
inner loop each time loops m times (which is a constant). It takes O(1) time per table entry,
multiplied by n*m, which would be O(n*m). Since we have the array store values we have
computed, there are no repeat computations.

Thus, we have a time complexity of O(n*m) for each method, and we multiply that by 2
because it runs 2 times giving us O(2m*n).

However, m which we are given is a constant. Thus when taken asymptotically O(2m*n) is

O(n).

Our function chooseProjects also runs in O(n) time, because it’s a recursive function that
takes in n as a parameter, and keeps calling itself with n-1 until the value passed by n-1 is
less than 0. The function runs a total of n times.

Thus, O(n) + O(n) = O(2n) = O(n).

1Problem 137/35
v - 0 pts Correct
- 5 pts there is no selection of projects
- 20 pts wrong algorithm
v + 2 pts Name

- 10 pts The algorithm may produce the non-optimal solution

@ | think it's more common to say that the complexity is O(mn) since m is in a parameter in the setting.

Page 6

2 Problem 2

2.1 Algorithm:

The problem states that for each job J;, we need a supercomputer which works on it for time
r;, a desktop for time q;, and a specialized computer for time t; in that specific order.

There is only 1 supercomputer, but more than n desktops and n specialized computers.
Our goal is to schedule all the jobs and minimize the time spent on all of them.
Conditions:

n > 0 and is an integer.

The following algorithm is creates an array S of size n, which will contain the order in which
to do the jobs such that the first job is S[0], then S[1]...S[n-1].

minimizeTime(n, [Ji, Jo, ... Ju], [r1, T2, ... T, [d1, Q2, - Qn], [t1, b2, - ta]):
Array S[0...n-1]
sort Jobs in descending order by time consumed by (r; + q;) so M[0] >= M[1] >= ... M[n]

for i = 0 to n-1

end for

return S

2.2 Proof/Explanation:

Because the supercomputer has to process all the jobs one time, it does not matter which
order the jobs are processed for the supercomputer. Thus what is more important is the order
the supercomputer does the jobs to minimize the time spent processing for the desktop and
specialized computers. We want the jobs that take longest for the desktop and specialized
computers to start working as fast as they can.

The individual time required for the desktop or specialized computer to run for the job does

not matter. This is because there are more than n desktops and more than n specialized
computers. There will always be a desktop or specialized computer that is open to run the
job on. What matters is the overall time that (r; + q;) takes, so that we can prioritize
running that job first on the supercomputer. Thus, we have minimized the total completion
time and have an optimal solution.

2.3 Time Complexity:

Our program starts off by sorting Jobs in descending order based off of the time consumed
by (r; + q;). We sort using a known O(nlogn) algorithm such as mergesort or quicksort (the
specific kind of sort does not matter, it just has to be an efficient sort). Then, we store the
result into an array with a for loop, which loops n times. Each storing is O(1), which is run
n times so O(n).

When taken asymptotically, O(nlogn + n) becomes O(nlogn).

Hence, our program is O(nlogn).

2 Problem 2 35/35
v - 0 pts Correct
- 3 pts Complexity is incorrect.
- 20 pts The algorithm does not give the schedule.
- 20 pts Wrong algorithm.
- 15 pts Wrong greedy strategy.

- 10 pts No proof of correctness.

Page 9

3 Problem 3

3.1 Algorithm + Proof/Explanation:

We are given a set G of n companies which can be represented as a graph. G is cyclic and
there are no nodes not connected to 2 other nodes. Each node also has information about
its brand value. A company is a competitor to another if it is directly connected to another
in the graph. Assume all brand values are non-negative.

Our goal is to choose nodes that are not competitors (not directly connected) to each other
with a maximum brand value (MPP).

Here is how we’ll implement the algorithm:

Let’s label the nodes in the graph starting with the root node as i = 1, and choose a direction
to traverse the graph until we reach the root once again. The node we traverse to first after
the root is labeled as i = 2, and so on until the nth node is i = n which comes back to root
node i = 1.

Def: Opt(i) = max brand value of a perfect subset for the subproblem containing companies
1,2,...i from set G

Goal: Get maximum brand value for Opt(n) of a perfect subset of set G.

Case 1: Opt(i) selects the current node and moves to neighbor i+2, meaning that we collect
the brand value of company i as V;. The current choice is part of the optimum solution
which consists of the remaining companies i+3,i4+4,...n

Case 2: Opt(i) skips current node and chooses next neighbor i+1
Bellman Equation:
0 ifi=0
Opt(i) = V; ifi=1
max(Opt(i — 1), V;+0pt(i-2)) ifi>1
For the algorithm here is the implementation:

One thing to note is that if you select the first item, then you cannot select the last time
and vice versa. Thus, we can split the problem into to subproblems. One is to find the max
brand value with non-competitive brands from brands i = 1 to i = n-1, and also subproblem
i=2toi=n.

findMax()
put graph G into an array form V
Array pathl1[0...n]
Array path2[0...n]
valueSubproblem1 = maximizeBrandValue(n, subarray of V from index 0 to n-2, pathl)
valueSubproblem?2 = maximizeBrandValue(n, subarray of V from index 1 to n-1, path2)
Array subset|0...n]
if valueSubproblem1 > valueSubproblem2, then return findSubset(n, subset, path1)
else return findSubset(n, subset, path2)
endif

end findMax

maximizeBrandValue(n, V, dp, path):

Array dp[0...]
dp[0] =0
dp[1] = V[1]
for i=2..n

dpfi] = max(dpfi-1], V] + dpfi-2)
if V[i] + dp[i-2] > dpl[i-1]
path[i] =i-2 // (note that path is mutable and will be updated after exiting method)
else path[i] = i-1
end if
end for
return dp(n]

end maximizeBrandValue

findSubset(n, subset, path)

inti=n

while (i > 0)
if pathl[i] == (i- 1)

then decrement i

else append 1 to subset and set i = path]i]
end if

end while

return subset

end findSubset

3.2 Time Complexity:

Our total time complexity for this problem is O(n).

This is because in our method maximizeBrandValue, we have a for loop that loops through n
times. Each loop-through we perform an O(1) operation. Since our array stores intermediate
results, there are no repeated calculations. This makes the overall run time of this function
to be O(n).

Our method findSubset to find the subset is also O(n). This is because we have a while loop
that iterates n times.

Thus, O(n) + O(n) = O(2n) = O(n) when taken asymptotically.

3 Problem 3 30/30
v - 0 pts Correct
- 5 pts Mistakes in the algorithm.
- 10 pts The algorithm does not take competition of vl and vn into account.
- 15 pts Wrong algorithm.
- 15 pts Missing significant details in the algorithm.
- 15 pts Algorithm is not efficient.
- 5 pts Algorithm is not clear: only some descriptions.
- 5 pts No explanation of correctness.
- 28 pts No reasonable algorithm.

- 29 pts No algorithm.

Page 13

