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Throughout this exam we will make use of the following dataset D of height and weight values:
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Let A be the column vector of h; values, and w be the column vector of w, values.
For the column vectors h and w, the least squares fit to w = ah + b is a = 2.917, b = —54.75.
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, Definition: A is positwe definate if it is Hermitian and all its eigenvalues are positive real values.
S For each of the following equations, mark whether the equation is True (valid for all specified
matrices A) or False. Assume that A’ denotes the hermitian transpose of A, and 1 = v/ —1.
For full credit, if you mark it True, you must ezplain how you derived this. If you mark it False,
you must give a counterezample.
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If X and Y are real matrices such that X + 1Y is unitary, then ( /Y X ) is orthogonal.
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If both the determinant and trace of a 2 x 2 Hermitian matrix A are positive real values, then
A 15 positive definite.
/ Hint: the trace of A — the sum of its diagonal elements — is also the sum of its eigenvalues.
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If H is Hermitian, then (/ +¢ H)(I —¢ H)™! is unitary, where [ is the identity.
(Hint: (A™Y) = (A)~1). .
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Y, If C7is a correlation matrix with SVD C' = U SV’, then U = V and S is a diagonal matrix
with positive values on the diagonal
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Covariance

Assume D is t} ; . /
2 s the B el ]
8 X 2 matrix with the two columns h and w mentioned earlier. |/

(a) What differences are the

like D} re between the covariance matrices for D and for the dataset that is
¢ LJ, but has two iden

tical copies of every row?
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(b) Slll)pose that we changed the vector h by subtracting its mean k = mean(h) from each of its
entries. How would cov(D) change, if at all?
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(c) Suppose that we changed the vector A by multiplying each of its entries by 1/, where ¢ is the
standard deviation of h. How would cov(D) change, if at all?
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(d) Suppose that we changed w to be h. How would cov(D) change, if at all?
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(e) If we plot a least squares line fit through the (h,w) points, will the point made up of the mean
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3. Least Squares 3
As stated earlier, for the column vectors h and w, the least squares fit to w
b= —54.75.

= ahi+b i80=2917,
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Let ‘1’ be the 8 x 1 vector of 1's, and let X be the matrix with the two columns h a1

(a) Suppose we use least squares to solve ' -
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(b) Is is true that ||w|]* = (n — 1) var(w) + n (mean(w))?

(c) Estimate the R? value for this least squares fit.
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(d) Is it possible for pseudoinverse X~ 11'{1:.’3 to be roughly the following matrix? o ey
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(e) Give a matrix A for which ¢ = A~ w is the set of coefficients (

fitting the dataset D using least squares.
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and each has the SVD

cov(D)
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(a) \’\‘hat is the largest eigenvalue of cov(D)?
What is the first principal component of D? ( v
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(b) Suppose that we changed the vector h by subtracting it
would the first principal component of D change, if at al
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(c) Suppose that we changed the vectors h and w by multiplying each of their entries by 2. How
would the first principal component of D change, if at all?
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(d) Suppose that we switched w and h, so that the columns of D are rcordered. How would the
first principal component of D change, if at all?
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(e) Suppose we added a new point (hg,we) = (60, 100000) to D.
ponents for resulting ¥ x 2 dataset D change?
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