20W-COMSCIM146 quiz

TOTAL POINTS

22 / 22

QUESTION 1

11a 2 / 2

- √ + 2 pts Correct
 - + 1 pts Click here to replace this description.
 - + **0 pts** Click here to replace this description.

QUESTION 2

21b2/2

- √ + 2 pts Correct
 - + 1 pts Click here to replace this description.
 - + **0 pts** Click here to replace this description.

QUESTION 3

31c2/2

- √ + 2 pts Correct
 - + **0 pts** Click here to replace this description.

QUESTION 4

426/6

√ - 0 pts Correct

QUESTION 5

53a2/2

√ - 0 pts Correct

QUESTION 6

63b2/2

√ - 0 pts Correct

QUESTION 7

73c2/2

√ - 0 pts Correct

QUESTION 8

844/4

√ - 0 pts Correct

Math mini-quiz

CM146 math mini-quiz

Winter 2020

Name:	
UCLA ID:	

Instructions:

- (a) The time limit for the exam is 30 minutes.
- (b) This exam is CLOSED BOOK and CLOSED NOTES.
- (c) You may use scratch paper if needed.
- (d) This exam contains four questions.
- (e) Mark your answers ON THE EXAM ITSELF IN THE SPACE GIVEN. If you make a mess, clearly indicate your final answer (box it).

Calculus 1

(a) (2 pts) Let function $f(\mathbf{x}) = ||\mathbf{x}||_2$. Here \mathbf{x} is a length-n vector (x_1, \dots, x_n) and $||\mathbf{x}||_2 = |\mathbf{x}||_2$ $\sqrt{\sum_i x_i^2}$. What is the partial derivative of f with respect to x_1 ?

$$\frac{1}{2} \left(\Xi_i \chi_i^2 \right)^{-1/2} \left(2 \chi_i \right)$$

(b) (2 pts) Evaluate
$$\int_b^\infty x \exp(-x^2) dx$$
. Remember $exp(x) \equiv e^x$.
Let $e^{-x^2} = u$
then $-2x e^{-x^2} dx = du$

$$-\int_{b}^{\infty} \frac{1}{2} du = -\frac{1}{2} \left[e^{-x^{2}} \right]_{b}^{\infty}$$
$$= -\frac{1}{2} \left[0 - e^{-b^{2}} \right]$$

(c) (2 pts) What is the gradient of $f(x,y) = \exp(x) + 2xy$, $\nabla f(x,y) = ?$

(a)
$$\begin{bmatrix} \exp(x) \\ y \end{bmatrix}$$

$$(b) \begin{bmatrix} \exp(x) + 2y \\ 2x \end{bmatrix}$$

(c)
$$\left[\begin{array}{c} \exp(x) + 2x \\ y \end{array} \right]$$

2 Probability

- (a) (2 pts) Given random variables X_1, X_2 , let $Y = X_1 + X_2$. Then $\mathbb{E}[Y] = \mathbb{E}[X_1] + \mathbb{E}[X_2]$. False
- (b) (2 pts) Given random variables X_1, X_2 , let $Y = X_1 + X_2$. Then $Var[Y] = Var[X_1] + Var[X_2]$. + 2 cov
- (c) (2 pts) Suppose A and B are two disjoint events. Then $P(A \cup B) = P(A) + P(B)$.

 True

 False

3 Linear algebra

Consider the vector $x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

(a) (2 pts) Compute $x^{\top}x$.

$$\chi^{\mathsf{T}}\chi = (12)\begin{pmatrix} 1\\2 \end{pmatrix} = 1+4=\boxed{5}$$

(b) (2 pts) Compute $||x||_2$.

$$\sqrt{\sum_{i} \chi_{i}^{2}} = \sqrt{1^{2} + 2^{2}} = \sqrt{5}$$

(c) (2 pts) Compute xx^{\top} .

$$\chi \chi^{T} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

4 Algorithms

Consider the $m \times n$ matrix A and the n-dimensional vector x. What is the time complexity in Big-O notation of computing:

- (a) (2 pts) Ax 1 23 1 2 12
 - 0 (mn)
- (b) (2 pts) $x^{\top}x$
 - 0 (n).