CM146 Midterm

PRASANNA SHREE KESAVA NARAYAN

TOTAL POINTS

77177

QUESTION 1

1Name+ID 2/ 2
v - 0 pts Correct

QUESTION 2
T/F 6 pts

211-48/8
- 2 pts 1incorrect
- 2 pts 2 incorrect
- 0 pts 3 actually correct
- 2 pts 4 incorrect

v - 0 pts correct

225-88/8
- 2 pts 5 incorrect
- 2 pts 6 incorrect
-2 pts 7 incorrect
- 2 pts 8 incorrect

v - 0 pts Correct

QUESTION 3
Multiple Choice 32 pts

3194/4
v - 0 pts Correct
-1 pts include d
-1 pts not include b
-1 pts include ¢

-1ptsinclude a

32104/4
- 0 pts Correct
v - 0 pts not include b
-1ptsinclude a

v - 0 pts not include d

-1 pts notinclude ¢

3314/4
v - 0 pts Correct
- 4 pts wrong

34124/4
v - 0 pts Correct
-1 pts choose ¢
-1 pts not choose a
- 1 pts not choose b

-1 pts choose d

35134/4
v - 0 pts Correct
-1 pts choose b
-1 pts choose ¢
-1 pts not choosing d

-1 pts choose a

36144/4
v - 0 pts Correct
- 1 pts not choosing b
-1 pts not choosing ¢
- 1 pts choose d

-1 pts not choosing a

37154/4
v - 0 pts Correct

- 4 pts Incorrect

38164/4
v - 0 pts Correct

- 4 pts Incorrect

QUESTION 4



Decision Tree 12 pts 53MLE 2/2

v - 0 pts Correct
41 Entropy of Y 2/2

v - 0 pts Correct

-1 pts Didn't solve

- 1 pts Miscellaneous mistakes

-2 Incorr
pts Incorrect - 2 pts No answer

. . - 1 pts Wrong answer
4.2 Information Gaine/6
- 1.5 pts Dropped the sum
v - 0 pts Correct

- 1 pts Incorrect information gain with correct X1 and

QUESTION 6
X2
- 2 pts Incorrect information gain Least absolute errors 7 pts
-4 pts Incorrect XT or X2 6.1Log likelihood 4/ 4

- 6 pts Incorrect v - 0 pts Correct

- 2 pts log(ab)=log(a) + log(b
4.3 Root choice 1/1 pts log(ab)=log(a) + log(b)

v - 0 pts Correct

- 0.5 pts 1 negative sign error
- 2 pts extra yn
-1pts Incorrect - 3 pts incorrect

- 1 pts Missing term

4.4 Zero training error 3/3
- 4 pts no attempt
v - 0 pts Correct

- 3 pts Improper rationale 6.2 Equivalence 3/3

v - 0 pts Correct

QUESTION 5 - 0.5 pts slightly incorrect

MLE Pareto s pts - 3 pts incorrect

. . -1 pts wrong steps/incorrect derivation
5.1 Log likelihood 3/3 P gstep

v - 0 pts Correct

- 2 pts Assumed \alpha was also raised to the
power

- 1.5 pts Dropped a log

-2 pts Assumed x_1==x_2 == x_3..==X_N ==X

- 3 pts Incorrect

- 1.5 pts Didn't raise \alpha to the Nth power

- 2 pts Didn't find likelihood of all the data

- 1 pts Miscellaneous mistake

5.2 Derivative 3/3
v - 0 pts Correct
- 1.5 pts Dropped the sum
- 1 pts Miscellaneous mistakes
- 1.5 pts Dropped a log

- 3 pts Incorrect
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A146: Introduction to Machine Learning . Winter 2019
Midterm

Feb. 11 2019

® Please do not open the exam unless you are instructed to do so.
* This is a closed book and closed notes exam.

¢ Everything you need in order to solve the problems ig supplied in the body of this
exam OR in a cheatsheet at the end of the exam.

* Mark your answers ON THE EXAM ITSELF. If you make a mess, clearly indicate
your final answer (box it), :

e For true/false questions, CIRCLE True OR False and provide a brief justification for
full credit,.

e Unless otherwise Instructed, for multiple-choice questions, CIRCLE ALL CORRECT -

'CHOICES (in some cases, there may be more than one) and provide a brief justification
if the question asks for one.

e If you think something about g question is open to interpretation, fee] free to ask the
instructor or make note on the exam.

* You may use scratch paper if needed (provided at the end of the exam).

¢ You have 1 hour 45 minutes.

e Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

Good Luck!

Legibly write your name and UID in the Space provided below to earn 2 points.

Name: SWEE K'ES AvA NARA A 4y P RAS AN A
UID: 004 973 gg




Name and UID /2
True/False /16
Multiple choice - : /32
Decision tree /12
‘Maximum likelihood /8
Least absolute errors /7
[ Total | | /77|




True/False (16 pts)
1. (2 pts) The training error of a learning algorithm is an accurate estimate of its gener-
alization error.

True False

Tﬂ\( g/m@?ﬁ&té W\ﬂ/‘j *@W%%J/ ” _/(M,&vm »”l f’%f‘hf g

&
J
It deb /&4’&(‘/ ol J dost é“@é |

2. (2 pts) We are trying to use logistic regression to predict disease vs healthy (y € {0,1}
where y = 1 refers to the disease class) by measuring how many steps a person walked

in a week: z € R. From the training data, we learn a weight w = —1 for the feature z

* and an intercept b = 1. This model will predict that the probability of disease increases

as a person walks more steps.
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3. (2 pts) For a binary classification problem, we use the perceptron algorithm to learn
weights w on a training dataset (assume the intercept b = 0). The error of the

perceptron on a test dataset is unchanged if we then rescale the weights w so that
they sum to 1.
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4. (2 pts) The function f(a:) = 2%s convex over the set of all real numbers.
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5. (2 pts) To predict y from @ where y € {0,1},z € RP, we transform by a function
¢(x) = Cx +d where C is a M x D matrix and d € R™. A logistic regression model

with ¢(z) as input can learn a non-linear decision boundary.
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6. (2 pts) The K-nearest neighbor algorithm often uses Buclidean distance as the default -

distance metric: d(w;, ®;) = ||@;—x;]|2. Suppose we instead use a new distance metric:
d(;, ;) = log(1+ ||z — ;|2). The classification results will change as a result of this

distance metric.
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. (2 pts) We have a convex function for which we would like to find the minimum. For
any choice of step size, gradient descent applied to our problem is always guaranteed

to converge to the minimum.
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8. (2 pts) Stochastic gradient descent is guaranteed to converge to the ‘minimum of a
convex function faster than batch gradient descent. . ..
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Multiple choice (32 pts)

CIRCLE ALL CORRECT CHOICES (in some cases, there may be more than one)

9. (3 pts) You are given a training dataset for a binary classification problem:
{(z1,11), -, (xNn,yn)} Where (zn,yn),n € {1,...,N} is an instance-label pair. You
use a learning algorithm to build a binary classifier D;. You then take one of the
instance-label pairs, add a copy of it to the training set (so your new training set will
have N -+ 1 instances), and rerun the same learning algorithm to create Dy (assume
any random numbers used in each’ case are the same). D; and D, will always have
identical decision boundaries when the learning algorithm used is: '

(a) Decision Tree

‘ 1-Nearest Neighbor
(c) 3-Nearest Neighbor
(d) Perceptron

10. (4 pts) We want to deploy a machine learning algorithm on a website to predict what ad
to show to a visitor to the website based on their view history. To learn this model, we
have a training dataset of a million instances and 10 features. Which of the following
learning models would be practical for this application 7

(a) K-Nearest Neighbors
(b) Logistic regression
Decision tree

(d) Perceptron

11. (4 pts) Which of the following phenomenon is called over-fitting ?

(a) low training error, low test error
'//‘> - . .
@ low training error, high test error
(¢) high training error, low test error

(d) high training error, high test error



12. (4 pts) In which of these settings is over-fitting more likely?

@ Increasing the complexity of the hypothesis space

(c) Increasing the value of the regularization hyperparameter

(d) Increasing the number of training examples

13. (4 pts) Which of the following is true of the Perceptron classifier 7

(a) If the Perceptron learning algorithm finds a hypothesis that achieves zero training
error, this hypothesis also achieves zero test error.
(b) If the Perceptron learning algorithm does not converge after MaxIter iterations,
the problem is not linearly separable.
(c) Computational cost of classifying a test instance increases with the size of the
.. training data.

@Computational cost of classifying a test instance increases with the number of
features.

AN

14. (4 pts) Which of the following methods can achieve zero training error on any linearly

separable dataset?

@ Perceptron

e

@ Logistic regression
@ 1-Nearest Neighbor
(d) 3-Nearest Neighbor

15. (4 pts) The entrdpy of a distribution over a set of 4 items with probability mass
function p is defined as — St _, p(k)logy p(k). Which of the following distributions has

the largest entropy?

(a) (0,1,0,0)
- (b) (1,0,0,0) -
(0.25,0.25,0.25, 0.25)
(d) (0.5,0.2,0.2,0.1)



16.

(4 pts) Let X € RNVXD he the design matrix with each row corresponding to the
features of an example and y € RY be a vector of all the labels. The OLS solution is
GoLp = (XTX )*lX Tqy. Which of the following is the OLS solution @ygw if we scale
each feature by 2 (i.e., the hew dataset is 2X)7

(a) 260D
(b) 460Lp
@Bow
(d) Borp



Decision Tree (12 pts)

Decision tree learning

" Qiven the following set of training observations with two features (X1, Xz) and the
response variable Y, we would like to learn a decision tree using information gain to
choose nodes. Recall that the information gain is defined as Gain = H[Y] - HY|X],
where H[Y] = —Ellogy P(Y)] is the entropy. See cheatsheet at the end of this exam
for entropy values.
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a) (2 pts) V\{hat is the entropy of Y7
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(b) (6 pts) What is the information gain of each of the attributes X and X relative
to .
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(c) (1 pts) Using mformatlon gain, Whlch attnbute will the ID3 decision tree 1earnmg

algorithm choose as the root?
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(d) (3 pts) Can we construct a decision tree with zero training error on this training
data? If yes, provide an example. If no, justify. :
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Maximum Likelihood (8 pts)

Let Xi,...,Xn be iid. random variables where X,, ~ Pareto(a),n € {1,...,N}.
The probability density function for X ~ Pareto(a) is: '

az~@t)  fx>1

flma) = {0, i g 2 1

(a) (3 pts) Give an expression for the log likelihood /() as a function of  given this
specific dataset. You may assume all values, Ky 55 38N 2 s
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(b) (3 pts) Compute the derivative of the log likelihood for this specific dataset.




Least absolute errors (7 pts)

In class, we showed how linear regression (ordinary least squar es) can be interpreted as
a probabilistic model. 'In this problem, we consider an alternative model for regression.
We have a training set {(mn,yn)}f , where x,, € RP and y, € R. Now we model our
target y, as distributed according to the following distribution:

1
D (Yn|n; 8) = o7 &XP ——Iyn — 6"z,
2b
Here |2| is the absolute value of z and b > O is a constant that is assumed to be known.

(a) (4 pts) Write the log likelihood of the parameters 1(8). Express your answer in
terms of ¥n, Tn, 6. :
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(b) (3 pts) Show that finding the maximum likelihood estimate of @ leads to the

same answer as finding the 8 that minimizes the cost function (which is the sum
of absolute errors):
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Identities

Probability density/mass functions for some distributions

2no? 207

1 (z - )
Normal : P{z;pu,0°) = — exp | —

A , K
Multinomial : P(xz;m) = H ek
k=1

x is a length K vector with exactly one entry equal to 1

and all other entries equal to 0
X exp(—A)

Poisson : P(z;}) = 2

Matrix calculus

Here x € R*, b € R", A € R™*". A is symmetric.

VelAx = 2Ax

Vb = b

Entropy
The entropy H(X) of a Bernoulli random variable X ~ Bernoulli(p) for different values of
P

p | H(X)

AE
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21097

15



You may use this page for scratch space.
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You may use this page for scratch space.
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