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CM 146 — Machine Learning: Midterm

Fall 2017

[ERY

F“M .
Name: [ [ sg”{c%“‘:{f

Yup, redacted.

Instructions:
L. This exam is CLOSED BOOK and CLOSED NOTES.

2. You may use scratch paper if needed.
3. The time limit for the exam is lhour, 45 minutes,

4. Mark your answers ON THE EXAM ITSELF. 1t you make g mess, clearly indicate
your final answer (box it).

5. For true/false questions, CIRCLE True OR False and provide g brief Justification for
full credit.

6. Unless otherwise mstructed, for multiple-chojce questions, CIRCLE ALL CORRECT
CHOICES (in some cases, there may be more than one) and provide a briefjustiﬁcation
if the question asks for one.



Q

Demsxon Trees
Regression



1. (6 pts) Machine Learning Basics

(a) (2 pts) Consider supervised and unsupervised learning. What is the main differ-
ence in the inputs and the goals?
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(c) (2 pts) What is the motivation to separate the available data into tra,

test data?
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2. (4 pts) Application Suppose you are given a dataset of cellular images from patients
with and without cancer. '

(a) (2 pts) Consider the models that we have discussed in lecture: decision trees,
k-NN, logistic regression, perceptrons. If you are required to train a model that
predicts the probability that the patient has cancer, which of these would you
prefer, and why?

IO W

ts) A model that attains 100% accuracy on the training set and 70% accuracy
he test set is better than a model that attains 80% accuracy on the training
set and 75% accuracy on the test set.
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True/False

3. (2 pts) You are given a training dataset with attributes A;,..., A, and instances
W 2™ and you use the ID3 algorithm to build a decision tree D;. You then take
one of the instances, add a copy of it to the training set (so your new training set will
have n + 1 instances), and rerun the decision tree learning algorithm (with the same
random seed) to create Dy. Dy and D, are necessarily identical decision trees.
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4. (2 pts) Stochastic Gradient Descent is faster per iteration than Batch Gradient De-

scent.
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5. (2 pts) You run the PerceptronTrain algorithm with mazlter = 100. The algorithm
terminates at the end of 100 iterations with a classifier that attains a training error of
1%. This means that the training data is not linearly separable.
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6. (2 pts) We want to learn a non-linear regression function to predict y from x where
y € R,z € R given training data {(z;, y;)}";. To do so, we transform z by a function
¢(x) and minimize the residual sum of squares objective function on the transformed

features: > o, (y; — BTd)(a:i))Q. This optimization problem is convex.
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7. (2 pts) We want to use 1-Nearest Neighbors (1-NN) to classify houses into one of two
classes (cheap vs expensive) given a single feature that measures the area of the house.
The predictions made by the 1-NN classifier data can change if the area of the house
is measured in square metres instead of square feet. (You can neglect the effect of ties

i.e., two training instances that are both nearest neighbors to a test instance.)
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8. (2 pts) You run gradient descent to minimize the function f(z) = (22—3)* Assume the
step size has been chosen appropriately and you run gradient descent till convergence.
Then gradient descent will return the global minimum of f.
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Multiple choice

(2 pts) In k-nearest neighbor classification, which of the following statements are true?
(circle all that are correct)

a) The decision boundary is smoother with smaller values of k.

Q( )1 k-NN does not require any parameters to be learned in the trammg step (for a
w»%’“w
fixed value of k and a fixed d 1stance fuuLuOh) st re ¥
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(2 pts) Assume we are given a set of one- dimencnon ! inputs and t! ;
output (that is, a set of {(z;,y:)},2; € Ry; € R). We Wou}d hke to compare the
following two models on our input dataset where 6 € R:
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A:y=0%
B:y=48z
For each model, we split into training and testing set to evaluate the learned model.

Which of the following is correct? Choose the answer that best describes the outcome,
and provide justification. '

(a There are datasets for which A would be more accurate than B.
(

\
)
b)// There are datasets for which B would be more accurate than A.
)
3
7

Both (a) and (b) are correct.
They would perform equally well on all datasets.

(c
(d

(3 pts) If your model is ovérﬁtting./ increasing the training set size (by drawing more
instances from the underlying distribution) will tend to result in which of the following?
(circle the best answer for each)

(a) training error will . mcrease / decrease / unknown
(b) test error will ... increase / decre 1/ unknown

(c) overfitting will ... increase / decrease":“/ unknown




For these problems, you must show your work to receive credit!

Maximum likelihood

12. We observe the following data consisting of four independent random variables X,
{1,...,4} drawn from the same Bern

ernoulli distribution with parameter 0 (i.e., P(Xn =
1) = (9). (X1, Xo, X3, X,) = (1, 1,0, 1). :

(a) Give an expression for the log likelihood I
dataset. [2 pts]
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(b) Give an expression for the derivative of the log likelihood for this specific dataset.
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(¢) What is the maximum likelihood estimate 8 of 67 [1 pts]




Decision Trees

13. We would like to learn a decision tree given the following pairs of training instances
with attributes (a;, ap) and target variable Y.

Instance number a; as | Y
1 T T, T
2 T T T
3 T FIF
4 F F| 7T
5 F T|F
6 F T F

For reference, for a random variable X that takes on two values with probability p and
1 — p, here are some values of the entropy function (we use log to the base 2 in this
question):

p=1:H(X)=1 pe{z 3} HX)~ .92

(a) What is the entropy of Y7 [1 pts]
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(b) What is the information gain of each of the attributes a; and aj relative to Y7 [4
pts]

ri,ﬁ{s%"?
T i

(c) Using information gain, which attribute will the 1D3 decision tree learning algo-
rithm choose as the root? [1 pts]
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(d) Construct a decision tree with zero training error on this training data. [2 pts]

oo

(e) Change exactly one of the instances (by changing either the attributes or labels
but not both) so that no decision tree can attain zero training error on
this dataset (indicate the instance number and the change). [2 pts]
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14.

Weighted linear regression

In the problem set, we considered weighted linear regression where the input features
are 1-dimensional. We now extend this to D-dimensional features. Thus, we want to
find @ that minimizes the cost function
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Here w, > 0, ¢, € RP*L 9 ¢ RPFL. X = l( : | € RNx(D+1) ¢ € RN, For
: 4
LN
this problem, assume that the intercept term is included in the 8 and that the linear

regression solution exists in this setting.

Questions:
(a) Show that J(@) can also be written as:
J0) = (y-X6)W(y—X6)

Here W is a diagonal matrix where the entry on the diagonal on row n, column

n is wy. [3 pts]
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(b) Show that the optimal value for 6 = (XTW X)"'XTWy. For reference, here
are some useful gradient identities (where x, b are vectors and A is a symmetric

matrix).
(1) fl)=b"e V()=
fl %
L) flz)=a"Azx  Vf(z)=2Az
[5 pts]
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(c) Inclass, we provided a probabilistic interpretation of ordinary least squares (OLS).
We now try to provide a probabilistic interpretation of weighted linear regression.
Consider a model where each of the N samples is independently drawn according
to a normal distribution
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In this model, each v, is drawn from a normal distribution with mean 6%, and

variance ¢,%. The 0,2 are known. Write the log likelihood of this model as a

P(?J’n]mna 9) =

L

function of 8. [3 points]
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(d) Show that finding the maximum likelihood estimate of 8 leads to the same answer
as solving a weighted linear regression. How do on? relate to wy,? [5 points]
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(Blank page provided for your work)
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