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- This exam ig CLOSED BOOK and CLOSED NOTES.
You mmay use scratch Paper if needed
The time limit for the exam ig lhour, 45 minutes,

Mark yoyuyr answers ON THRE EXAM ITSELF. 1f you make g mess, clearly indicate
your final angwer (box it)

For true /false questions, CIRCLE True OR False and provide 5 brief Justification for
full credit,

Unless otherwige instructed, for multiple-chojce questionsg, CIRCLE ALL CORRECT
CHOICES (in some cases, there may be more thay, one) and provide g brie‘f Justification
if the question asks for ope. T
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If you think s'omething about g Question ig open to interpretation, feel free tq ask the






(6 pts) Machine Learning Basicsg

(a) (2 pts) Consider Supervised and

uhsupervised learning‘ What
ence in the Inputs and the goglg?

iS the main differ.
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2. (4 pts) Application Suppose YOou are given g, dataset of cellular images from patients
with and without cancer.

equired to traip g model] that
he patient has cancer which of thege would yoy
prefer, and why?
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(b) (2 Pts) A model that attains 100

% accuracy on the training set gnq 70% accuracy
on the test set ig better than 5 model th ; '
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3. (2 pts) You are given a training dataset with attributes A1,..., A, and instances
2z 2™ and you use the ID3 algorithm to build a decision tree Ds. You then take
one of the instances, add a copy of it to the training set (so your new training set will

have n +1 instances), and rerun the decision tree learning algorithm (with the same
random seed) to create Dy. Dy and Dy are necessarily identical decision trees.
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4. (2 pts) Stochastic Gradient Descent is faster per iteration than Batch Gradient De-
scent.
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5. (2 pts) You run the PerceptronTrain algorithm with maz/ter = 100. The algorithm
terminates at the end of 100 iterations with a classifier that attains a training error of
1%. This means that the training data is not linearly separable.
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6. (2 pts) We want to learn a non-linear regression function to predict y from g where
Y€ R,z eRP givep training data {(z,, ¥i)}y. To do 50, we transform x by a functiop
@(x) and minimize the residys] sum of squares objective function on the transformed
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7. (2 pts) We want to use 1-N

earest Neighbors (1-NN )
classes (

to classify houses into one of two
cheap vs expensive) gi 3] ' at measures the area of the house.
The predictions made by the 1-

Is measured in Square metres instead of Square feet. (You can neglect the effect of ties
e, two training instances that & '

A*cigmﬁ‘!yé e updr awiih aha%wm e diharce nep

oo . Pl
Fore ali Podt ; Feop P"?; T e
P [

Fekp %m@j

Mo s

8. (2 pts) You run gradient descent to minimize the function S
step size has been chosen appropriately and yoy ry
Then gradient descent will return the gl
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Multiple choice

S are true?
(a) The decision boundary IS smoother with smaller values of -
b) k-NN does not require any Parameters to pe learned in the training step (for a
fixed value of k and & fixed distance functlon)
{I@) If we set k equal to th

€ number of instanc
the same class for any input,

esin the ¢
) For larger valyeg of k, it is more likely that tp
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@ They would pe

are correct.

rform equally well on aJ] datasets.
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11. (3 pts) If your mode] ig

instances from the under]
(circle the begt answer fo

overfitting, increas
yving distribution)
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ing the trajnip

g set size (by drawing more
will tend to rest

1t in which of the following?

(a) training error wi ..gj:'ﬂ”increasgf decrease / unknown
(b) test error will ... increase £ decreasej unknown
(c) overfitting wi]]

- Increase / decrease ) unknown



For these problems, yoy must show

YOur work to recejve credit!
T2 Ieceive credit
Maximum likelihood

(a) Give an €xpression for

the log likelihood ¢ (6) as a function of g give
dataset. [2 pts]
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(b) Give an expr

ession for the derivative of the log likelihood for this specific dataset.
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What is the maximum likelihood estimate @ of 07 [1 pts]
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Decision Trees

13. We would like to learn a decision

tree given the following
with attributes (a;, a,)

pairs of training instances
and target variable V.

For reference, for g random varia

ble X that takes on two values with probability p and
1 — p, here are some values of the entropy function (we use log to the base 2 in this
question):

Pe{5,2}  H(X)~ 92

(a) What is the entropy of ¥'7 [1 pts]
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(b) What is the information gain of each of th
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(c) Using information gain, which attribut
rithm choose as the root? [1 pts]
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(d) Construct a decision tree with Z€ro training error on this training data. 12 pts]
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(e) Change exactly one of the instances (by changing either the attributes or labels

but not both) so that no decision tree can attain zero training error on

this dataset (indicate the instance number and the change). [2 pts]

ch

. . -
Mhage Inctanee Mwwdee 3
23

4, valve fo F

12



R

Loy

14.

‘Here w, > 0, z, € RPT1 9 ¢ RP*+!, X =

Weighted linear regression

In the problem set, we considered weighted linear regression where the input features
are l-dimensional. We now extend this to D-dimensional features. Thus, we want to
find € that minimizes the cost function

N
J0) = > wilyn — 6%x,)
n=l

T \

Ty
‘ € RVX(PH) o 2 RN, For

T
T

3 . . .\ 4 . e g N .
this problem, assume that the intercept term is included in the 6 and that the linear
regression solution exists in this setting.

Questions:
| B &4
(a) Show that J(6) can also be written as: p | « W¥Y

Py nf

J(6) = (y—X0)"W(y - X6)

Here W is a diagonal matrix where the entry on the diagonal on row n, column

n is wy,. [3 pts]
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(b) Show that the optimal value for 6 = (X"WX) ' X"Wy. For reference, here
are some useful gradient identities (where @, b are vectors and A is a symmetric

matrix).
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(¢) Inclass, we provided a probabilistic interpretation of ordinary least squares (OLS).
We now try to provide a probabilistic interpretation of weighted linear regression.
Consider a model where each of the N samples is independently drawn according
to a normal distribution
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In this model, each y, is drawn from a normal distribution with mean 6"z, and

variance 0,2, The 0,% are known. Write the log likelihood of this model as a
function of 8. [3 points]

(d) Show that finding the maximum likelihood estimate of € leads to the same answer
as solving a weighted linear regression. How do 0,,® relate to w,? [5 points]
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(Blank page provided for your work)
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