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TOTAL POINTS

57/73

QUESTION 1
True/False 20 pts
11(1) Convex, Ridge Regression, Ensemble,
Perceptrono/s
v -2 pts 1. incorrect
v - 2 pts 2. incorrect

v - 2 pts 3. incorrect
v - 2 pts 4. incorrect

1.2 (5-8) PCA, K-means, Entropy, AdaBoost
6/8
v - 2 pts 6) false

1.3 (9-10) Dual, kernels 4/ 4
v - 0 pts Correct

QUESTION 2
Multiple Choice 18 pts
2.1(11-14) Decision Tree, Normalization,
Kernels, and NNs 11/12

v-1pts12)a, c,d
2.2 (15) Eigenvalues 0/3

v - 3 pts 15) d)
2.3(16) Leave-one-out 3/3

v - 0 pts Correct

QUESTION 3

3(17) Performance Metrics 8/8
v - 0 pts Correct

QUESTION 4
(18) SVM g pts

41(a)4a/4a
v - 0 pts Correct
42(b)a/a
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v - 0 pts Correct

QUESTION 5

5(19) HMMs 1/ 2
v -1 pts Used Bayes' Rule, but stops short of pulling

denominator out of optimization

QUESTION 6
(20) GMMSs 5 pts
6.1(a)2/2

v - 0 pts Correct
6.2(b)2/3

v -1 pts partially incorrect steps

QUESTION 7
(21) Kernelized Logistic Regression 12 pts
71(a)4/4
v - 0 pts Correct
72(b)asa
v - 0 pts Correct
73(c)4a/4a
v - 0 pts Correct
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v Instructions

. This exam is CLOSED BOOK and CLOSED NOTES.

. The time limit for the exam is 3 hours. -

Mark your answers ON THE EXAM ITSELF IN THE SPACE PROVIDED. If you make a
mess, clearly indicate your final answer (box it).

DO NOT write on the reverse side.
You may use scratch paper if needed.
For true/false questions, CIRCLE True OR False

For multiple-choice questions, CIRCLE ALL CORRECT CHOICES AND ONLY THE COR-
RECT CHOICES (in some cases, there may be more than one but always at least one correct
choice) for full credit.

For all other questions, show the work that you did to arrive at your answer so that we can
give you partial credit where appropriate.

If you think something about a question is open to interpretation, feel free to ask the instructor
or make a note on the exam.



True/False

1. (2 pts) A convex function always has a finite minimum value.

( True ) False
A
™

2. (2 pts) The solution to ridge regression (i.¢., the minimizer of J(8) = Zi\;l (yn — (B0 + Z(]i):l ded)>2+

ASE 62 is always unique for any \ > 0.

True

3. (2 pts) Consider an ensemble learning algorithm for binary classification that uses simple
majority voting among 3 learned hypotheses. Suppose each of the hypotheseshas training
error €, The error of the ensemble on the same training data can be worse than e.

True ( False /

4. (2 pts) Consider two perceptron classifiers both trained on the same linearly-separable training
data where one perceptron has maxIter=1000, but the other perceptron has maxIter=2000.
The perceptron with maxIter=2000 might have worse training accuracy than the perceptron

with maxIter=1000.

True { False



9. (2 pts) For a constrained optimization problem, we can always obtain the solution to
primal by solving the dual instead.

Tz g RO
rrue

10. (2 pts) For a valid kernel function k, k(x, ) > 0 for all .

 True False
4 o

the



15. (3 pts) Let Ay > Ay > ... > A4 be the eigenvalues of the sample covariance matrix C. The
solution to the optimization problem maz,x! Cz.



Short answers

17. (8 pts) Performance metrics
Consider a linear hypothesis that we use to make predictions for a binary classification problem
where the two classes are denoted {0,1} and Ay, = SIGN(w”@ + b) models the probability
that x has label 1. We assume that class 1 represents positives and class O represents negatives.
What happens to the following as we increase b 7 (Choose all that apply)

,gk v S o S g5

1

(a) recall can ...anreaseﬁ / decrease{/ stay the same }

(b) the number of positives can ... increase / decrease /‘stay the same |

(c) specificity can ... increase | decrease,/ stay the sarme 7'V

(d) precision can ./, stay the same




(b) (4 pts) What is the effect of increasing C on the following quantities? g\ st o glagk

i. The margin
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ii. The number of support vectors
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20. (5 pts) Gaussian Mixture Models
We now consider clustering 1D data using a Gaussian Mixture Model. We assume the
number of components of the mixture (equivalently the number of clusters) K = 2. You are
given three instances: (z1,xq,73) = (1,10, 20) where each z,, € R,n € {1,2,3}. We use the
EM algorithm to maximize the likelihood. Suppose the output of the E-step is the following

matrix:
1 0
" = (0.4 0.6\
\ o1/

Here entry (n, k) of this matrix v, is the posterior probability that instance n belongs to
mixture component k. For this question, you can leave your final answer in the form ¥.

(a) (2 pts) Show the M-step update for the mixing weights 71, 7.
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21. (12 pts) Kernelized logistic regression
In this problem, we explore how logistic regression can be kernelized.

We are given a set of N training examples, {(z1,v1),..., (N, yn)} where z, € RP, y, €
{0,1}. We learn a logistic regression model hg(z) = o(67x) using gradient descent where
o(z) = T?%:'i is the sigmoid function.

In iteration ¢ of gradient descent, we update 6 «— 6 — 73, €nn Where €, = ho(Tn) — yn is
the error for the n** training sample, and 7 is the step size or learning rate.

We map x to ¢(x) and we would like to learn a logistic regression model (67 ¢(z)) while
only working with the inner products ¢ (z)p(z’).

(a) (4 pts) Assume we initialize 6 to zero in the gradient descent algorithm, i.e., @ < 0. Show
that at the end of every iteration of gradient descent, 8 is always a linear combination

of the training samples: 8 = Zi:;l and(x,).
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(¢) (4 pts) The final step in kernelization is to show that we do not need to explicitly store
6. Instead from part (a), we can implicitly update 8 by updating o,,. Show how «, is
intialized and how it is updated.
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Q Problem Points | Score
1-10 | True/False 20
11-15 | Multiple choice 15
16-19 | Short answers 23
20 Kernelized logistic regression 12
Total 70

it




S}}

(2 pts) A non-invertible covariance matrix does not permit PCA. /

T
True “alse /f

(2 pts) For fixed prototypes, finding the cluster assignment that minimizes the K-means
objective function is a convex problem.

{True\ False

(2 pts) The entropy of a discrete probability distribution is maximized for a uniform distri-
ution.

\Ti"uen‘} False

(2 pts) In AdaBoost, the weight associated with each weak learner is never less than zero.

o N
{True/ False



Multiple choice

11. (3 pts) Suppose we have a binary decision tree trained using the ID3 algorithm with maximum

depth, k, for a D-dimensional feature space with N training examples. The worst case cost of
classifying an unseen datapoint is:

12. (3 pts) For which of the following algorithms can the results change on normalizing the
features?
f(:):} K-Nearest Neighbors
(b) Decision trees X

)
¢) Neural networks

13. (3 pts) Given two kernel functions ki (u,v) and ko(u, v) that take as input two vectors u, v €

¥

Ve AL

R?, which of the following are valid kernel functions ?

Q@) b (1, 0) + b (u, )

(©) Fa(u,0) - kalu,o) Ceope) ¥

() ~ka(u,v) Au s
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14. (3 pts) Given a 3-layer neural network consisting of an input layer with 9 inpvt units, a
hidden layer with 3 units and an output layer with a single unit. Assume that the units in
a given layer are connected to all units in the previous layer. The number of parameters in

this network is: ig. 1
a 5

(2) 12

(o) 30 ]

{c)34

(d) 44



16. (3 pts) Suppose you are running a learning experiment on a new algorithm for binary classi-
fication. You have a data set consisting of 100 positive and 100 negative examples. You plan

to use leave-one-out cross-validation and compare your algorithm to a baseline function: a
simple majority function. What is the average cross-validation accuracy of the baseline?

‘

(a) 0.50
(b) 1.00
((c)>0.00
(d) Not enough information
/ Y
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18. (8 pts) SVM
Recall the soft-margin SVM in the primal:

N

.
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& o> 0 nedl, LN}
(a) (4 pts) Suppose you are given the solution to this problem but only for (w*, b*). Instances
1 and 2 are the support vectors. Compute the optimal values of the slack variables from
Pp
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19. (2 pts) Hidden Markov Model
We want to compute the sequence of hidden states zj.p that has maximum posterior proba-

bility given the observations from T time points: yi.7 . Specifically we want to compute

arg max P{z1.7|y1.1)
1.7

How does the solution to this problem compare to the solution to the most probable path
problem discussed in class 7 Justify.
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A =

(b) (3 pts) Show the M-step update for the means p, pa.
- It x,

= = s
i 7
b
i
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(b) (4 pts) Using the above result, show how we can write hg(x) to make a prediction on a
new input ¢(x) by only using inner products of the form o(x)Tp(a)).
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(Blank page provided for your work)
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