19F-COMSCIM146-1 Midterm

JOHN ARTHUR DANG

TOTAL POINTS

94.5 / 100

QUESTION 1

1 Name 2 / 2

√ - 0 pts Correct

QUESTION 2

Short Questions 27 pts

2.1 True/False 10 / 10

- √ 0 pts Correct
 - 2 pts a) incorect
 - 2 pts b) incorrect
 - 2 pts c) incorrect
 - 2 pts d)incorrect
 - 2 pts e) incorrect

2.2 Multiple Choice 9/9

- √ 0 pts Correct
 - 3 pts a) incorrect
 - 3 pts b) NE[X]
 - 3 pts c) 0.6

2.3 Regression **5.5** / **8**

Write down the J(w)

- √ + 2 pts correct write down the square error
 - + 1 pts partly wrong of the error formulation

correct gradient w.r.t. w1

- √ + 2 pts all three terms correct
 - + 1 pts partly correct (pos/neg sign)
 - + 0 pts wrong gradient

correct gradient w.r.t. w2

- + 2 pts all three terms are correct
- √ + 1 pts partly correct (+/-)
 - + 0 pts wrong gradient

correct simplified result for w1

- + 1 pts correct result for w1
- \checkmark + 0.5 pts correct result based on the wrong gradient calculation or partly correct simplification; or no final substituation at all (get equation w1=sth. but has w2 there)
 - + 1 pts correct closed form result
- + **0.5 pts** trying to use closed form but wrong calculation
- + **0 pts** no solution for w1 or completely wrong answer

correct simplified result for w2

- + 1 pts correct final result
- + **0.5 pts** partly wrong because the wrong gradient calculation or wrong simplification procedure; or no final simplification at all (get w2=some equation but still have w1/w2 there)
 - + 1 pts correct matrix formulation
 - + **0.5 pts** using closed form but wrong formulation
- + **0 pts** no solution for w2 or completley wrong answer

Directly use the closed form

- +8 pts correct w result
- + 2 pts correct closed form equation
- + 3 pts correctly write down the X^TX
- + 3 pts correctly write down the (X^Ty)
- + 1 pts wrong shape of the matrix
- + 1 pts partly mistake in the last final step
- + 1 pts partly correct closed format
- + 1 pts partly correct substituation of the matrix
- + 0 pts nothing

QUESTION 3

3 Decision Tree 15 / 15

Q1

- 2 pts 100% wrong formula
- **0 pts** Wrong answer, we didn't ask to compute exact number, so as long as entropy formulation is correct, we don't remove points.
 - 1 pts Half wrong formula
 - 3 pts Anything else not above

Q2

- 2 pts 100% wrong formula
- **0 pts** Wrong answer, we didn't ask to compute exact number, so as long as entropy formulation is correct, we don't remove points.
 - 1 pts Half wrong formula
 - 3 pts Anything else not above

Q3

- 2 pts 100% wrong formula
- **O pts** Wrong answer, we didn't ask to compute exact number, so as long as entropy formulation is correct, we don't remove points.
 - 1 pts Half wrong formula
 - 3 pts Anything else not above

Q4

- 1 pts Wrong tree but correct use of entropy and reasoning in Info Gain
- 2 pts Wrong tree without any reasoning. Remove points when entropy formula and numbers are correct. Conditioned on Q1-3, students should know how to use Info Gain. This is important concept.
- 1 pts Draw 2 trees but did not say which one is chosen
- **1.5 pts** Correct reasons, but incorrectly use entropy formula
- **1 pts** Wrong application of entropy formula, and wrong tree without explanation.
 - 1 pts Not consistent with entropy computation.
- 1 pts write algorithm but not say what is the tree, or say using info gain

Q5

- **2 pts** Anything absolutely wrong. We do not take points off Q5 if its answer depends on Q4.
 - 3 pts Does not attempt at all.

√ - 0 pts 100% correct everything

QUESTION 4

4 Perceptron 18 / 20

√ + 2 pts Q1 [2 pts]: answer is "d".

Q2 [3 pts]

- √ + 1 pts Answer is No.
- $\sqrt{+2}$ pts The weight will not change and stay the same as the initial value.
- + **0 pts** Note: weight can be initialized as any value and not necessarily to be zero.
- O.5 pts Partially Correct for the second checkpoint:
 not only the weight not converged, the weights
 actually will not be updated
- + **0 pts** Note: I think you understand this question, although we shouldn't allow the parameter not updated.

Q3 [5 pts]

\checkmark + 2 pts Before Update: y_i w^T x_i <= 0; After Update: we want y_i (w + \alpha y_i x_i)^T x_i > 0

- $\sqrt{+2}$ pts \alpha > -y_i w^T x_i / $||x_i||^2$ y_i^2
 - + **0.5 pts** Since y_i = +1 or -1, y_i^2 = 1
 - + **0.5 pts** Therefore: $\alpha > -y_i w^T x_i / \|x_i\|^2$
 - 1 pts Sign is reversed for checkpoint 1.
- **0.5 pts** Lack of explanation for the second, third and fourth checkpoints.
- + **0 pts** We can actually choose any learning rate larger than -yi w xi / ||xi||^2, instead of only the marginal value.
- + **0 pts** Note: I assume you know the third checkpoint: y_i^2 = 1, but you should actually clarify it.
- √ 0.5 pts Note: you cannot delete x or y from nominator and denominator, as it's matrix multiplication
- **0.5 pts** Note: x not necessarily only have two dimension.
- **0.5 pts** Note: It's $||x||^2$, not $||x^2||$. Please see the definition of norm.
 - **0.5 pts** Note: miss a x for norminator
- **0.5 pts** Sign is reversed for checkpoint 2

Q4(a) [3 pts]

 $\sqrt{ + 1 \text{ pts u}^T \text{ w}^t} = \text{u}^T \text{ (w}^{t-1} + \text{alpha y}_{l_t}$ x_{l_t}).

 $\sqrt{ + 1 pts \cdot forall i, y_i(u^Tx_i)} >= \cdot gamma.$

 \checkmark + 1 pts induction and initial state (w^0 = 0).

- 1 pts Missing alpha for the first point, and more alpha in the second checkpoint.
- **0.5 pts** Lack of explanation for the third checkpoint on initial state (w^0=0)
- 1 pts Didn't combine the first two checkpoints and get correct bound.
- + **0 pts** Note: in 4(b) you mention w^0 = 0, here I assume you know it, but you should actually clarify it.
 - 0.5 pts Didn't finish the proof

Q4(b) [3 pts]

 $\sqrt{+0.5}$ pts $||w^t||^2 = ||w^{t-1}| + \alpha y_{l-1}|$

 $x_{I_t}||^2 = ||w^{t-1}||^2 + 2\alpha y_{I_t} (w^{t-1})^T$

 $x_{l_t} + (\alpha y_{l_t})^2 ||x_{l_t}||^2.$

 \checkmark + 0.5 pts Since the perceptron with parameter (w^t) makes mistake on data point (x_{I_t}, y_{I_t}): y_{I_t} (w^{t-1})^T x_{I_t} < 0.

 $\sqrt{+0.5}$ pts Since y_i = +1 or -1, y_i^2 = 1.

 $\sqrt{+0.5}$ pts By definition, $||x_t||^2 \le R^2$

 $\sqrt{+1}$ pts induction and initial state (w⁰ = 0).

- **0.5 pts** Lack of explanation for the second, third and fourth checkpoints (how to derive $||w^t||^2 ||w^t||^2 \le a|pha^2 R^2$).
- 0.5 pts Lack of explanation for the fifth checkpoint on initial state (w^0=0)
- + **2.5 pts** Another proof. I think it's correct, except that you should clarify w^0=0. Also, better to clarify why ||sum(yi*xi)||^2 <= max(||yixi||^2)
- + **2.5 pts** Another proof. I think it's correct, except that you should clarify ||yi||=1.

Q4(c) [3 pts]

 \checkmark + 1 pts Cauchy Schwarz Inequality: w^t \cdot u <= ||u||||w^t||.

 $\sqrt{+1}$ pts ||u|| = 1.

√ + 1 pts mistake bound is R^2/gamma^2.

√ - 0.5 pts Lack of explanation for the first and second checkpoints. + **0 pts** Note: \square means vertical, and // means parallel. The in-equation w \cdot u = ||w|| only holds when u // w, instead of u \square w. And also this inequality is cauchy schwarz inequality, better to clarify it.

 $\sqrt{+1}$ pts Q4(d) [1 pts]: No, as \alpha doesn't appear in the mistake bound.

QUESTION 5

5 Logistic Regression 23 / 24

- **3 pts** Logistic Regression Q1 : correct ans is 1. Your ans is incorrect.
- **3 pts** Logistic Regression Q2. correct ans is 0. Your ans is incorrect.
- **3 pts** Logistic Regression Q3: correct ans is 1/2. Your ans is incorrect.

Logistic Regression Q4. Given gamma = 0

- 1 pts sigma = 1 when w^Tx>0 (not mentioned)
- $\sqrt{-1 \text{ pts}}$ sigma = 1/2 when w^Tx=0 (not mentioned)
 - 1 pts sigma = 0 when w^Tx<0 (not mentioned)
 - 0 pts You have slight mistake

Logistic Regression Q5.

- 1 pts Did not mention Probability condition unchanged or P(y=1|x) >= 0.5
- 2 pts Did not derive From P(y=1|x) >=0.5, to w^Tx >= 0
 - 1 pts w^Tx >= 0
- + 2 pts Simply mention that From P(y=1|x) >= 0.5, it can be derived that $w^Tx >= 0$ but does not derive it.
 - **O pts** You have slight mistake in calculation.
- **4 pts** Logistic Regression Q6. Correct ans is 1- $P(y=1|x) = 1/(1+exp(w^Tx/gamma))$. Your answer is incorrect.

Logistic Regression Q7.

- 1 pts Need to consider both cases when y=1 and y=-1.
- **2 pts** incorrect/no mention of product of P(y|x) or sum of log(p(y|x))
- 1 pts incorrect/no mention of (i) max of -log function or (ii) min of +log or max of P or (iii) product/sum but mention P or log P

- **0 pts** You have slight mistake. or Your answer is unclear.
- 1 pts either in the equation (1) You used sigma in place of y or (2) did not use any y or (3) you forgot to use log
 - O pts Logistic Regression: All correct

QUESTION 6

6 Maximum Likelihood 12 / 12

1)

- + 1.5 pts Product decomposition
- + 1.5 pts Correct indices/expression

2)

- + 1.5 pts Log of joint distribution
- + 1.5 pts Correct log transformation

3)

- + 2 pts Partial with respect to lambda
- + 1 pts mistake on partial with respect to lambda
- + 1 pts set to zero + wrong math
- + 2 pts Setting to zero
- + 2 pts Correct final expression
- + 1 pts Final expression minor mistake (sign, N missing)
 - + 0 pts No attempt/wrong
- √ + 12 pts All correct

CM146: Introduction to Machine Learning

Fall 2019

Midterm Solution

Nov. 4th, 2019

- Please do not open the exam unless you are instructed to do so.
- This is a closed book and closed notes exam.
- Everything you need in order to solve the problems is supplied in the body of this exam.
- Mark your answers ON THE EXAM ITSELF. If you make a mess, clearly indicate your final answer (box it).
- If you think something about a question is open to interpretation, please make a note on the exam.
- If you run out of room for your answer in the space provided, you can write it down in the last page and indicate clearly that you've done so.
- You may ask TA for scratch paper or scratch in the last page of the exam.
- You have 1 hour 30 minutes (90 minutes).
- Besides having the correct answer, being concise and clear is very important. For full credit, you must show your work and explain your answers.

Good Luck!

Legibly write your name and UID in the space provided below to earn 2 points.

Name: John	Arthur	Dang	
UID:			

Short Questions (27pts)

1	1. (10 pts) True OR False (c	heck the box).
		larger depth is more likely to generalize better to new dat
	(b) 5-NN (KNN with K= M True	5) is more robust to outliers than 1-NN. \Box False
	☐ True	stic gradient descent, gradient descent can always find th
	(d) A classifier that attain a classifier that attain☐ True	ns 100% accuracy on the training set is always better than s 70% accuracy on the same training set. Y False
	(e) If data is not linearly s□ True	separable, K-NN algorithm cannot reach training error zero Y False
2.	(9 pts) Multiple Choice (ch	eck the box).
	is the average of the	$N_3 = 100$ $N_3 = 200$ $N_3 = 100$
	(b) Let X_1, \ldots, X_N are i.i.d variable X . Let $E[X]$ $X_1 + X_2 + \ldots + X_N$?	random variables with the same distribution of a random to be the expectation of X . What is the expectation of X . Y Z
	(c) A coin is tossed 100 ti	mes and lands heads 60 times. What is the maximum the probability of heads. Y.C. 0.6 D. 0
		57

3. (8 pts) We are given two-dimensional inputs x_i and their corresponding output y_i . We denote $x_{i,1}$ and $x_{i,2}$ to be the first and second dimension of x_i . We use the following linear regression model to predict y:

$$y_i = w_1 x_{i,1} + w_2 x_{i,2}.$$

Given a data set $\{(x_i, y_i)\}, i = 1, ..., N$, derive the best w_1 and w_2 that minimize the square error. To simplify the answer, you can use the following notations:

Decision Tree (15 pts)

Consider the following training dataset with 2 features (Age and Weight), and the outcome is Diabetes. You don't have to simplify your answer and note $\log_2 3 \approx 1.6, \log_2 5 \approx 2.3$.

$_Patient$	Age	Weight	Diabetes		Patient	Age	Weight	Diabetes
1	Young	Heavy	No	***	7	Young	Light	No
2	Young	Heavy	No		8	Young	Light	No
3	Young	Heavy	No		9	Old	Heavy	Yes
4	Young	Heavy	No		10	Old	Heavy	Yes
5	Young	Light	No		11	Old	Light	No
6	Young	Light	No		12	Old	Light	No

1.	(3 pts) What is t	he entropy H(D	liabetes)?				
	Hint: $H(S) = P(D)ML$ etc	$5 = \begin{cases} \sum_{v=1}^{K} P(S = a_v) \\ 5 = \begin{cases} e \\ 0 \end{cases} \end{cases}$	$\log_2 P(S=a_v)$	- P(.	Dia Setes	5 = Yes.) =	10 = 5
	H (Diblote	3)=-6/092	to - 5 1052	06	50 ′ - 3	. 1	P
	()					4	· - /- · /
2.	(3 pts) What is	the information	gain if we parti	tion the data	on the att	ribute Age?	,
mg)=2	Hint: $Gain(S, A)$ $ \begin{array}{c} $	$= H(S) - \sum_{v \in S} f(v)$	$\bigvee_{ ext{Value}(A)} rac{ S_v }{ S } H(S_v)$	- 0 =	0	-1	Volage= Your)-

Hint: Gain(S, A) = $H(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} H(S_v)$. $|S_v| = |S_v| H(S_v) + |S_$

(1911) = Heavy) = 12 P(Diagres=Yes), Weight = Heavy) = 5 = 3 (Palm (Diagres=Yes), Weight = Light) = 6 = 0 (Palm (Diagres=Yes), Weight = Light) = 6 = 0 = 2650 = 12 (2918) = 260 - 12 (2918)

= 2191

4. (3 pts) Apply the ID3 algorithm to build the tree using both features Age and Weight.
4. (3 pts) Apply the ID3 algorithm to build the tree using both features Age and Weight. We Solit on Age Tivet Give (Dayers, Weight) = 0.191 Gain (1/9×10) Age) = 0.317 / (Yain (Dayers, Weight) = 0.191
Root
Age= Towny Age= Old
Age four Age old Diabetes = No weight heary weight = /15ht Diabetes = Yes Diabetes = No Class labels and secret by majority Note Lines labels and secret by majority Note
Diasetes= Yes Diasetes= No
Class labels are decided by majority Note
5. (3 pts) Find another tree that yields the same training error as the free part of
weight heavy weight =)18ht
Age=Young Age=01d Diasetes=No Halfes=No Diasetes=Yes
Probletes=No Diagras=Yes
Born twees get 0% two

Perceptron (20 pts)

In this problem we consider various variants of Perceptron and explore their properties.

1. (2 pts) First, complete the Line 3 of the Perceptron algorithm by choosing from the following options. (Hint: Given a data point (x_i, y_i) , if the current model parametrized by w makes a wrong decision, the model will update.) (a) $w^T x_i \ge 0$ (b) $y_i = 1$ (e) $w^T x_i < 0$ (f) $y_i = -1$ (c) $y_i w^T x_i \ge 0$ (d) $y_i w^T x_i \le 0$

Algorithm	1	Perceptron	with	loorning	noto	_
0		r creebuon	MILL	learning	rate	α

- 1: Initialize $w = \vec{0}$
- 2: for each $(x_i, y_i) \in \mathbb{D}_{train}$, where $y_i = 1$ or -1 do
- if $\frac{\sqrt{\sqrt{X/20}}}{\sqrt{2}}$ then
- 4:
- 6: end for
- 7: return w
- 2. (3 pts) Can we set $\alpha = 0$? First answer yes/no then explain your answer. No its x=0 then wise
- 3. (5 pts) Choose a learning rate such that when the algorithm sees two consecutive occurrences of the same example, it will never make a mistake on the second occurrence. Prove your answer is correct. (Hint: before update, statement in Line 3 is True. After

the update, it has to be False)

Lot Wy be the weight veetor of times tep t

When model makes a mistake

Yi W+ Xi \le O Go update

WHI = WA + QYIX; WE WANT YI WITXI >O WHEN YI WATINI &O when an update happing

W++2 = W+, tdyix; Yi (W++, t & YiXi) Xi > 0 Y' WHITH + XYIXITXI >0

ayixitxi > -yiwantxi

 4. We prove the convergence of Perceptron algorithm in class. The derived the mistake bound of the Perceptron algorithm with learning rate α. We assume (1) there exist a vector u and γ > 0 such that u = 1 and for all data (x_i, y_i) ∈ D_{train}, y_i(u^Tx_i) ≥ γ; (2) there exist R > 0 such that x_i ≤ R. Complete the following proof.
(a) (3 pts) Let w^t represent the weight vector w after t updates. We further assume $w^0 = \vec{0}$ (i.e., ψ is initialized with a vector with all zeros). Prove $w^t \cdot u \ge t\alpha\gamma$.
Thurs after every update vinoreases by 28
(b) (3 pts) Show that after t updates, $ w^t ^2 \le t\alpha^2 R^2$.
24/WIXILO 11W++112=(W++ & 4;Xi) (W++ &4;Yi)T -1(W)12+2 & VIXIV + &4;Xi)TXIII =(W)+XY
WITH A GIN A CARE WITH A CHARGE S & AT WAST WHAT I I WE CARE S & AT WAST WHAT I I WE CARE S & AT WAST WHAT I WE CARE S & AT WAST WAST
a 110/0 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
tasé vitu É IINTII É a RVF F = P > + = P2
U · A

(d) (1 pts) Does the choice of α affect the mistake bound? (Yes/No)

4. We prove the convergence of Perceptron algorithm in class. In the following, we will

No the & term is concelled out

Logistic Regression (24 pts)

Remember we mentioned in the lecture, for a binary classification problem y=1,-1 logistic regression model P(y=1|x) by $P(y=1|x)=\sigma(w^Tx)=1/(1+\exp(-w^Tx))$. In the following, we consider a variant of logistic regression and model P(y=1|x) with

$$\sigma_{\gamma}(w^T x) = \frac{1}{1 + \exp(-w^T x/\gamma)},$$

where $\gamma > 0$ is a hyper-parameter that can be tuned. Answer the following questions.

- 1. (3 pts) When $w^T x \to \infty$, what is the value of $\sigma_{\gamma}(w^T x)$?
- 2. (3 pts) When $w^T x \to -\infty$, what is the value of $\sigma_{\gamma}(w^T x)$?

3. (3 pts) What happen when
$$\gamma \to \infty$$
?

4. (3 pts) What happen when $\gamma \to 0$?

$$G_{\gamma}(WX) \to f_{\gamma}(WX) = f_{\gamma}(WX) =$$

When WTX < 0 for WTX > 0

6. (4 pts) Write down P(y = -1|x). P(y = -1/X) = |-P(y = 1/X)| = |-P(y =

7. (4 pts) Given a dataset $(x_i, y_i), i = 1, ..., N$. Write down the optimization problem maximizing the log-likelihood of the above model. $\frac{1}{2} \frac{1}{2} \frac{1}{2$

= \(\frac{1}{2}\) \(\frac{1}{2

Maximum Likelihood (12 pts)

Let x_1, \ldots, x_N are i.i.d. random samples from the exponential distribution with the probability density function (pdf): $P(x) = \lambda \exp(-\lambda x).$

Answer the following questions.

- 1. (3 pts) Write down the joint probability of $P(x_1, x_2, ..., x_N)$.

 Shall vata 1.5 find, joint probability factors $P(X_1, X_2, X_N) = P(X_1) P(X_1) P(X_N) P(X_N)$
- 2. (3 pts) What is the log likelihood of λ given the dataset $\{x_1, x_2, ..., x_N\}$? $|\partial \mathcal{G}(P(X))| = |\partial \mathcal{G}(P(X_1))| + |$
- 3. (6 pts) Derive the maximum likelihood estimator of λ (i.e., find the λ that maximizes the likelihood).

Tet
$$L(\lambda)$$
 be $\log 1/\log \sqrt{1/\log y}$ hood
 $L(\lambda) = \frac{\sqrt{\log(\lambda) + \log(e^{-\lambda x_i})}}{\sqrt{\log(\lambda) + \log(e^{-\lambda x_i})}}$
 $= \frac{\sqrt{\log(\lambda) + \log(e^{-\lambda x_i})}}{\sqrt{\log(\lambda) + \log(e^{-\lambda x_i})}}$

If you run out of room in answering questions, you can continued your answer here. Please indicate clearly that the answer is in the last page.