CS M146 Midterm

MARK GUEVARA

TOTAL POINTS

80/100

QUESTION 1 important points like solving a linear system Xw. E.g.,

1True/false 15 /18
- 0 pts Correct

trying to solve Xw = 0 instead of Xw =y or mention X
is invertible

. . . o - 8 pts only mentioned definition of linear
v - 3 pts (a) incorrect (e.g., saying p(x) is probability) )
independence
- 3 pts (b) incorrect )
- 10 pts incorrect
- 3 pts (c) incorrect

QUESTION 3
Decision tree 15 pts

- 3 pts (d) incorrect
- 3 pts (e) incorrect
- 3 pts (f) incorrect

- 2 pts (a) partial points for showing how to use 31 (a) i, ii7/7

integral to get probability from p(x) and arguing 0 \leq /-0 pts Correct

integral p(x) \leq 1 (but we are asking p(x), not integral

P(x))

-2 pts a) i. incorrect
- 0.5 pts a) i. partially incorrect

QUESTION 2 - 5 pts a) ii. incorrect

. - 2.5 pts a) ii. partially incorrect
Short Question 23 pts pts a)il.p Y

2.1(a)-(d) 13713 3.2(a)iii3/3
v - 0 pts Correct v - 0 pts Correct
- 4 pts (a) incorrect - 1.5 pts a) iii. Partially incorrect
- 3 pts (b) incorrect - 3 pts a) iii) incorrect

- 3 pts (c¢) incorrect
33(b)s/5

v - 0 pts Correct

- 3 pts (d) incorrect
- 2 pts (a) partially correct

- 1.5 pts (b) partially correct - 2.5 pts partially incorrect

- 1.5 pts (c) partially correct - 5 pts incorrect
- 1.5 pts (d) partially correct
- 0 pts (b) should specify tuning "hyper-parameter” QUESTION 4
Perceptron 23 pts
2.2(e)s/10

- 0 pts Correct 4.1(a) (answer 2,4,5,6; 4,5,6; 2,4,6; 4,6, are

- 1 pts Answer correct but missed one/two steps all Okay) 2/4
while proving - 4 pts Totally wrong

- 2 pts Some minor mistakes/missed a important v - 2 pts Partially Correct
step - 0 pts Correct

v - 5 pts Major mistakes, but mentioned some



42(b) a/8
v - 4 pts did mention yx or mention learning rate, but
got totally wrong with the constraint of the learning
rate

- 0 pts correct

- 2 pts made tiny mistakes on the constraint of the
learning rate

- 8 pts did not mention yx or learning rate (yx is the
basic and necessary component when updating the

weights)

43(c)(d)e/6

- 3 pts cis wrong

-3 pts d is wrong

- 6 pts both c and d are wrong
v - 0 pts all correct

-1 pts c is partially correct: mention "adding
dimension" without specific solutions or with wrong
solutions

-1 pts d is partially correct: A. wrong wOw1w?2

B.neglect the question "only solution”

44(€)o/5
- 2 pts partially correct, e.g. draw a correct diagram
- 0 pts correct

v - 5 pts wrong

QUESTION 5
19 pts

5.1(a)2/3

- 0 pts Correct
v -1pts No Y prediction

- 1 pts Incorrect Prediction

- 1.5 pts Wrong calculation & not finished; no Y
prediction

- 1.5 pts Incomplete & wrong calculation

- 0.5 pts Wrong calculation

- 0.5 pts No Y prediction after calculating
probabilities

- 1.5 pts Wrong calculation & wrong prediction

- 1 pts Wrong formula is used

- 0 pts Slight mistake in calculation

- 1.5 pts Not finished; no Y prediction

- 1 pts Your calculation is wrong & how you get Y?
See solution

- 0.5 pts You need to show how you get Y

- 1 pts Wrong calculation & prediction is wrong

- 3 pts No answer

- 2 pts Unfinished

52(b)e/6

v - 0 pts Correct

- 2 pts But you need to prove it.

-1 pts You need to show that the other form of this
classifier is w"Tx=0

- 6 pts Wrong answer

- 0.5 pts See the solution in CCLE

- 1 pts See the solution in CCLE

- 2 pts Your proof is not correct

- 3 pts Wrong perception ; see the solution on CCLE

- 2 pts | did not understand what have you written.
Assuming you have written 'linear classifier' | have
graded. You need to prove it. Please the the solution
on CCLE

5.3(C) 10/10

- 0 pts Correct
- 0 pts You forgot to mention the sum
- 2 pts Please see the solution on CCLE
- 10 pts No answer
- 5 pts Unfinished
- 8 pts Wrong answer

v - 0 pts Slight mistake
- 2 pts How??
- 9 pts No answer
- 8 pts Not finished
- 0 pts Mistake
- 3 pts Please see the solution on CCLE

- 5 pts Not correct.

QUESTION 6
6Name 2/2



v - 0 pts Correct
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CM146: Introduction to Machine Learning Fall 2018
Midterm

Nov. 5, 2018

e This is a closed book exam. Everything you need in order to solve the problems is supplied
in the body of this exam. 4

e This exam booklet contains Five problems.
o You have 90 minutes to earn a total of 100 points.

» Besides having the correct answer, being concise and clear is very important. For
full credit, you must show your work and explain your answers.

Good Luck!

Name and ID: (2 Point) mm—]( (7%&\,’&(0\' 70‘-5@{62(12@ |

Name /2
True/False Questions /18
Short Questions /23
Decision Tree /15
Perceptron /23
Regression | /19

[ Total T [ /100 |







1 True/False Questions (Add a 1 sentence justification.) [18 pts]

(a) (3 pts) For a continuous random variable = and its probability density function p(z), it holds
that 0 < p(z) <1 for all z.
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(b) (3 pts) K-NN is a linear classification model.

False 0 o -NN 7 Non-lnsar

(c) (3 pts) Logistic regression is a probabilistic model and we use the maximum likelihood
principle to learn the model parameters.
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(d) (3 pts) Suppose you are given a dataset with 990 cancer-free images and 10 images from
cancer patients. If you train a classifier which achieves 98% accuracy on this dataset, it is a

reasonably good classifier.
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(¢) (3 pts) A classifier that attains 100% accuracy on the trammg set is always better than a
classifier that attains 70% accuracy on the training set.
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(f) (3 pts) A decision tree is iearneal by minimizi.ng informiation gain,
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2 Short Questions [23 pts]

a) (4 pts) What is the main difference between gradient descent and stochastic gradient descent
(in one sentence)? Which one require more iterations to converge, why?
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(b) (3 pts) What is the motivation to have a development set?
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¢) (3 pts) Describe the differences between linear regression and logistic regression (in less than
two sentences).
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(d) (3 pts) Consider the fodels that we have discussed in lecture: decision trees, k-NN, logistic
regression, Perceptrons. If you are required to train a model that predicts the probability

that the patient has cancer, which of these would you prefer, and why?
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(e) (10 pts) Given n linearly independent feature vectors in n dim
assignment to the binary labels you can always construct a linear
w which separates the points. Assume that the classifi

& set of vectors are linearly independent if no vector in
combination of the others,
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ensions, show that for any
classifier with weight vector
er has the form sign(w - ). Hint;
the set can be defined as a linear
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3 Decision Trees [15 pts]

For this problem, you can write your anéwers using log,, but it may be helpful to note that
logy 3 =~ 1.6 and entropy H(S) ,~Zv 1 S = v)loge P(S = v). The information gain of an

attribute A is G(S, 4) = H(S) — X yevatue( 4) ﬁH (Sy), where Sy is the subset of S for which A

has value v.

(a) We will use the dataset below to learn a-_decision tree which predicts the output Y, given by
the binary values of A, B, C.

Y
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i. (2 pts) Calculate the entropy of the label .
1 2 %

(Y) = —alyq ™ wlya
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ii. (5 pts) Draw the decision tree that will be learned using the ID3 algorithm that achieves
zero training error.
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iii. (8 pts) Is this tree optimal (i.e. does it get minimal training error with minimal depth?)
explain in two sentences, and if it isn’t optimal draw the optimal tree.
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{b) (5 pts) You have a dataset of 400 positive examples and 400 negative examples. Now suppose
you have two possible splits. One split results in (300+, 100-) and {100+, 300-). The other
choice results in (2004, 400-), and {206+ 0). Which split is most preferable and why?
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4 Perceptron Algorithm [23 pts]

(a) (4 pts) Assume that you are given training data (z,y) € R? x {+1} in the following order:

| Instance 1 2 3 4 5 6 T .8
Label y +1 -1 +1 -1 -+1 -1 +1 +1
Date (21, z2) | (10,10) | (0,0) | (8,4) | (3,3) | (4,8) | (0.5,0.5) | (4, 3) (2, -5)

We run the Perceptron algorithm on all the samples once, starting with an initial set of
weights w = (1,1) and bias b = 0. On which examples, the model makes an update?
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(By(8 pts) Suggest a variation of the Perceptron update rule which has the following property:
If the algorithm sees two consecutive occurrences of the same example, it will never make
a mistake on the second occurrence. (Hint: determine an appropriate learning rate that
guarantees this property). Prove your answer is correct.

The update rule is ;
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(¢} (8 pts) Linear separability is a pre-requisite for the Perceptron algorithm. In practice, data
is almost always inseparable, such as XOR.

r1  Z3 Y
-1 -1 -1
-1 +1}+1
+1 1|41
+1 417 -1

Provide a solution to convert the inseparable data to be linearly separable. The XOR can be
: . R ;{.} _
used for the illustration. »
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(d) (8 pts) Design (specify wp, w1, 1wy for) a two-input Perceptron. (with an additional bias or
offset term) that computes “OR” Boolean functions. Is your answer the only solution?
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(¢) (5 pts) What is the maximal margin 7y in the above OR dataset. -
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5 Logistic Regression[19 pts]

Considering the following model of logistic regression for a binary classification,

function o(2) = —1—

with a sigmoid
T¥e =’

P(Y = 1[X, wo,wl,wg) — G(wo +wi X + szz)

(a) (3 pts) Suppose we have learned that for the logistic zegressmn model,

(—1n(4),In(2),~1n(3)). What will be the prediction (y
z = (1,2)?
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(c) (10 pts) In the hoemwork, we mention an alternative formulation of learning a logistic
regression model when y € {1,0}

m
argmin Yy log o (w”z) + (1 — ) log(1 — o(wTaz))

i=1
. Derive its gradient. W
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