CS M146 Final Exam

MARK GUEVARA

TOTAL POINTS

85.5/118

QUESTION 1

1True or False 15/15
v - 0 pts Correct
- 3 pts a) wrong
- 3 pts b) wrong
- 3 pts ¢) wrong
- 3 pts d) wrong
)

- 3 pts €) wrong

QUESTION 2
Naive Bayes 14 pts

2.1(a)-(e) 8/14
- 0 pts Correct
- 3 pts a) wrong
- 1.5 pts a) partial
- 3 pts b) wrong
v - 3 pts ¢) wrong
v - 3 pts d) wrong
-1 pts d) 1 wrong
- 2 pts d) 2 wrong
- 2 pts e) wrong

- 1 pts e) partial

QUESTION 3
Expectation Maximization 18 pts

3.1(a)-(b)6.5/9
- 0 pts Correct
- 2 pts a) partially correct
- 4 pts a) incorrect
v - 2.5 pts b) partially incorrect

- 5 pts b) incorrect

3.2(c)-(d)8/9

- 4 pts (c) incorrect (do not decompose P(x) into

\sum_y P(x,y) )

- 2 pts (c) minor mistake

- 5 pts (d) incorrect

- 3 pts (d) mention it is an iterative process. but the
process is incorrect or is unclear

- 1 pts (d) mention alternative update P(YIx; \theta)
and parameter s but do not give sufficient details

- 5 pts (d) Incorrect
v -1 pts (d) missing some minor details

- 0 pts Correct

QUESTION 4
Kernels and SVM 26 pts

4.1 (a) i Circle correct option 2/ 2
v - 0 pts Correct
- 2 pts Wrong

4.2 (a) ii Prove12/5
- 0 pts Correct
v - 3 pts mentioned k(x,x') = ¢ (x) T (x') or linear
combination, but did not mention ¢' (x) = V¢ ¢ (x) or
positive semi-definite
- 5 pts incorrect

- 1 pts tiny mistake

4.3(a)ii Prove 2 2/5

v - 3 pts Only mentioned k(x,x’) = ¢(x)-¢p(x’) or linear
combination

- 2 pts Gave the feature mappings: ¢(x) =<
f1(x),f2(x),...,fn(x)>

- 0 pts Correct (Gave @3(x) =<
1(x),f2(x),...,fn(x),g1(x),92(x),...,gn(x)> or mentioned the
concatenation (NOT numerical addition) of feature
mappings or positive semi-definite)

- 5 pts Wrong



4.4 (b) i Unconstrained o/4 - 0.5 pts if error <=e, probability = 1-dela

- 2 pts Wrong but gave the correct hinge loss - 0.5 pts Not equal to e, correct ans: <=e
- 0 pts Correct - 1 pts Uncertainty that the error will be <= e is (1-
v - 4 pts Wrong delta)
- 1 pts e means the max limit of error of any
4.5 (b) ii Remove constraints 3/6 hypothesis in H
- 0 pts correct - 0 pts Not less than e, correct ans: <=e
v - 3 pts partly correct - 1.5 pts e, and delta are swapped and error is not
- 6 pts wrong on the training data.
- 0 pts Click here to replace this description. - 0.5 pts partially correct explanation of #training
example or sample complexity m or inequality
4.6 (b) iii Support vectors 2/4 -1 pts Not equal to 1/e, correct ans: <=e; not equal
- 0 pts Correct to 1/delta, correct ans>=(1-delta)
v - 2 pts mistake in Q1 (no partial credits) - 0 pts m is #training example/data
- 2 pts mistake in Q2 (no partial credits)
53Math 4/4
QUESTION 5 v - 0 pts Correct

PAC learning and VC dimension 15 pts -4 pts Totally incorrect

- 2 pts partially correct

51vcdime/e - 0.5 pts Wrong final ans
v - 0 pts Correct - 1 pts without reasoning
- 3 pts wrong vc with proof - 0 pts | don't understand what is your ans?

- 6 pts wrong VC, no proof

-1.5 pts wrong e QUESTION 6
- 1.5 pts wrong delta Short Answer Question 30 pts
- 1.5 pts wrong m
- 2.5 pts partially correct math 6.1 (a)'(g) 22/30
- 5 pts wrong ans - 0 pts Correct
- 3 pts wrong proof - 2 pts a) wrong
- 1 pts Incomplete proof: You need to show that VC v - 2 pts b) partially wrong
can not be more than 2 - 4 pts b) wrong
- 4 pts no proof v - 3 pts c) partially wrong (e.g., mistake in
- 0.5 pts No details proof derivation, say \theta = sum y_i).
- 5 pts You are supposed to find a numeric value - 6 pts c) wrong
and prove it. - 3 pts d) partially wrong
- 6 pts no ans for vc dim - 6 pts d) wrong
- 2 pts e) wrong
5.2 PAC defines/5 v - 3 pts f) partially wrong
v - 0 pts Correct - 5 pts f) wrong
- 1.5 pts wrong/no definition of e - 2 pts g) partially wrong (e.g., did not mention prior
- 1.5 pts wrong/no definition of delta or detailed conditions)
- 1.5 pts wrong/no definition of m/inequality - 5 pts g) wrong
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in the body of this exam.

o This exam booklet contains six problems.

You have 150 minutes to earn a total of 120 points.

This is a closed book exam. E\.zerything you néed in order to solve the problems is supplied

Besides giving the correct answer, being concise and clear is very important. To

get the full credit, you must show your work and explain your answers,

Good Luck!
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1 True or-False [15 pts]

Choose either True or False for each of the following statements. (If your answer is incorrect, partial
point may be given if your explanation is reasonable.) '

(a,)' (3 pfs) After mapping feature into a high dimension space with a proper kernel, a Perceptron
»may be able to achieve better classification performance on instances it wasn’t able to classify
before. A
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(b) (3 pts) Given two classifiers A and B, if A has a lower VC-dimension than B, then éoncep—
tually A is more likely to overfit the data.
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(¢} (3 pts) If two vanables, X, Y are condltmna,l mdependent given Z, then the variables X, Y
are independent as well.
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(d) (3 pts) The SGD algorithm for soft-SVM optnmza,tlon problem does not converge if the
training samples are not linearly separable.
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(e) (3 pts) In the AdaBoost algorithm, at each iteration, we increase the weight for misclassified
examples
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2 Naive Bayes [14 pts]

Imagine you are given the following set of training examples. Each feature can take one of three
- nominal values: a, b, or c. :

F1|F2|F3
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(a) (3 pts) What modeling assumptions does the Naive Bayes model make?
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(b) (3 pts) How many parameters do we need to learn from the data in the model you deﬁned

in (a)
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(c) (3 pts) How many parameters do we have to estimate if we do not make the a.ssump’mon as
in Naive Bayes? '
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(d) (3 pts) We use the maximum likelihood principle to estimate the model parameters in (a).
Show the numerical solutions of any three of the model parameters.

P(Fl zalc=v) = 72
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(e) (2 pts) In two sentences, describe the difference between logistic regression and the Naive
Bayes?
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3 'Expectatioh Maximization [18 pts]

Suppose that somebody gave you a bag with two biased coins, having the probability of getting
heads of p1 and py respectively. You are supposed to figure out p; and ps by tossing the coins
repeatedly. You will repeat the following experiment n times: pick a coin uniformly at random
from the bag (i.e. each coin has probability -1,2 of being picked) and toss it, recording the outcome.
The coin is then returned to the bag. Assume that each experiment is independent.

“(a) (4 pts) Suppose the two coins have different colors: the white coin has probability p1 to show
head, while the yellow coin has probability ps to show head. Based on color, you know which
coin you tossed during the experiments. After n tosses, the numbers of heads and tails of the ¢ £
white coin are H; and T, respectively. And, the number of heads and tails of the yellow coin '
are Hs and T2 Write down the likelihood function.
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(b) (5 pts) Based on the above likelihood function. Derive the maximum likelihood estimators
for the two parameters py and py (please provide the detailed derivations).
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(c) (4 pts) Now suppose both coins look identical, hence the identity of the coin is missing in
your data. After n tosses, if the numbers of heads and tails we got are H and 7', respectively.
Write down the likelihood function. Describing the cha]lenge of maximizing this likelihood
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“(d) (5 pts) Describe how to optimize the likelihood function in the previous question by the EM
_ algorithm (please provide sufficient details).
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4 Kernels and SVM (26 pts] |

(a) In this question we Wlll define kernels, study some of their proper ties and develop one specific

kernel.
i. (2 pts) Circle the correct option below:
(A function K (z, z) is & valid kernel if it corresponds to the d‘ 1nner(do£))
- product’s, “sum” } in some feature space, of the feature representations that correspond
to z'and z.

ii. (10 pts) In the next few questions we gulde you to prove the followmg properties of

kernels:
Linear Combination Property: if \7’ i, ki(z, ') are valid kernels, and ¢; > 0 are constants

then kg(z,2') = 3, ciki(z, 2').is a,lso a valid kernel.

* (5 pts) Given a valid kernel k;(z,2') and a constant ¢ > 0, use the definition above
to show that k(x, ') = ck;(z,z') is also a valid-kernel.
: \

‘{ (%J %l\ < C ‘4! (%}’J{,!) = ‘.Zi C‘«LIG" (’)&/j//’) / WL@(@ c‘. :lc’:

Ed

= g s o vl bl

* (5 pts) Given valid kernels k1 (z,z') and ky(z, 2'), use the definition above to show
_ that k(z,2') = k1(z,2') + ka(z, 2') is also a valid kernel. :
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(b) Let {(zi,%)}}; be a set of [ training pairs of feature vectors and labels. We consider binary
classification, and assume y; € {—1,+1}Vi. The following is the primal formulation of L2
SVM, a variant of the standard SVM obtained by squaring the. hinge loss:
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i. (4 pts) Derive an unconstrained optimization problem that is equivalent to Eq. (1).
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ii. (6 pts) Show that removmg the last set of constraints {£ > 0,Vi} does not change the
optnnal solution to the primal problem.
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ili. (4 pts) Given the following dataset in 1-d space, which consists of 4 positive data points
{0,1,2,3} and 3 negative data points {—3,—2,-1}.

o if C =0, please list all the support vectors.
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o if M(”—/> 00, please list all the supporf vectors. '
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5 -PAC learning and VC dimension [15 pts]

(a) (6 pts) Consider a learning problem in which z € R is a real number, and the hypothesis
space is a set of intervals H = {{a < ¢ < b)|a,b € R}. Note that the hypothesis labels points
inside the interval as positive, and negative otherwise. What is the VC dimension of H?
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(b) (5 pts) The sample complexity of a PAC learnable Hypothesis class H is given by

> 10g(|H|/‘5)' : 2)
¢

In three sentences, explain the mea.nmg of e and ¢ and the meaning of the inequality.
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(c) (4 pts) Now suppose we have a training set with 25 examples and our model has an error of
0.32 on the test-set. Based on Eq. (2), how many training examples we may need to reduce
the error rate to 0.15 ? (Only need to list the formulation.)
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6 Short Answer Questions [30 pts]

Most of the following questions can be answered in one or two sentences. Please make your answer

concise and to the point,

(a) (2 pts) Multiple choice: for & neural network, which one of the following design ch01ces that'

affects the trade-off between underfitting and overfitting the most:

i. The learning rate

-he number of hidden nodes

ili. The initialization of model weights

(b) (4 pts) Describe the difference between mazimum likelihood (MLE) and maximum a posteriori
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(c) (6 pts) If a data point y follows the Poisson distribution with rate parameter 6, then the

probability of a single observation ¥ is given by
0¥ exp—t
!

p(y;0) =

" You are given data points 1,2, ..., Yn independently drawn from a Poisson distribution with

parameter §. What is the MLE of §. (Hint: ‘write down the log—hkellhood as a function of 6. )
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(d) (6 pts) Given vectors z and 2 in R®, define the kernel K g(m, z) = (B + z - z)? for any value
B > 0. Find the corresponding feature map ¢g(-). " .
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" {e) (2 pts) Your billionaire friend needs your help. She needs to classify job applications into
good/bad categories, and also to detect job applicants who lie in their applications using
density estimation to detect outliers. To meet these needs, do you recommend using a dis-

criminative or generative classifier? Why?
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(f) (5 pts) We consider Boolean functions in the class L10,30,100. . This is the class of 10 out of
30 out of 100, defined over {z1,z,,.. .Z100}. Recall that a function in the class Lyp 30,100 is
defined by a set of 30 relevant variables. An example z € {0, 1}*% is positive if and only if at L
least 10 out these 30 variables are on: In the following discussion, for the sake of simplicity,
whenever we consider a member in L10,30,100, we will consider the function f in which the first
30 coordinates are the relevant coordinates. Show a linear threshold function A that behaves

just like f € L10,30’1gg on {0, 1}100.
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(g) (5 pts) Describe what are the model assumptions in the Gaussian Mixture Model (GMM).
Is GMM a discriminative model or a generative model? >
)
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